• 제목/요약/키워드: hardware fault detection

검색결과 76건 처리시간 0.025초

A Biologically Inspired New Hardware Fault Detection: immunotronic and Genetic Algorithm-Based Approach

  • Lee, Sanghyung;Kim, Euntai;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권1호
    • /
    • pp.7-11
    • /
    • 2004
  • This paper proposes a new immunotronic approach for the fault detection in hardware. The suggested method is, inspired by biology and its implementation is based on genetic algorithm. Tolerance conditions in the immunotronic system for fault detection correspond to the antibodies in the biological immune system. A novel algorithm of generating tolerance conditions is suggested based on the principle of the antibody diversity and GA optimization is employed to select mature tolerance conditions in immunotronic fault detection system. The suggested method is applied to the fault detection for MCNC benchmark FSMs (finite state machines) and its effectiveness is demonstrated by the computer simulation.

무인 ATV의 종 방향 제어를 위한 CAN 기반 분산형 시스템의 고장감지 및 진단 (Fault Detection and Diagnosis of CAN-Based Distributed Systems for Longitudinal Control of All-Terrain Vehicle(ATV))

  • 김순태;송봉섭;홍석교
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.983-990
    • /
    • 2008
  • This paper presents the fault detection and diagnosis(FDD) algorithm to enhance reliability of a longitudinal controller for an autonomous All-Terrain Vehicle(ATV). The FDD is designed to monitor and identify faults which may occur in distributed hardware used for longitudinal control, e.g., DSPs, CAN, sensors, and actuators. The proposed FDD is an integrated approach of decentralized and centralized FDD. While the former is processed in a DSP and suitable to detect faults in a single hardware, it is sensitive to noise and disturbance. On the other hand, the latter is performed via communication and it detects and diagnoses faults through analyzing concurrent performances of multiple hardware modules, but it is limited to isolate faults specifically in terms of components in the single hardware. To compensate for disadvantages of each FDD approach, two layered structure including both decentralized and centralized FDD is proposed and it allows us to make more robust fault detection and more specific fault isolation. The effectiveness of the proposed method will be validated experimentally.

Hybrid Fault Detection and Isolation Techniques for Aircraft Inertial Measurement Sensors

  • Kim, Seung-Keun;Jung, In-Sung;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.73-83
    • /
    • 2006
  • In this paper, a redundancy management system for aircraft is studied, and fault detection and isolation algorithms of inertial sensor system are proposed. Contrary to the conventional aircraft systems, UAV system cannot allow triple or quadruple hardware redundancy due to the limitations on space and weight. In the UAV system with dual sensors, it is very difficult to identify the faulty sensor. Also, conventional fault detection and isolation (FDI) method cannot isolate multiple faults in a triple redundancy system. In this paper, two FDI techniques are proposed. First, hardware based FDI technique is proposed, which combines a parity equation approach with a wavelet based technique. Second, analytic FDI technique based on the Kalman filter is proposed, which is a model-based FDI method utilizing the threshold value and the confirmation time. To provide the reference value for detecting the fault, residuals are calculated using the extended Kalman filter. To verify the effectiveness of the proposed FDI methods, numerical simulations are performed.

광학 오류 주입 공격에 강인한 몽고메리 지수승 기반 RSA 하드웨어 구현 (Hardware Implementation of Optical Fault Injection Attack-resistant Montgomery exponentiation-based RSA)

  • 이동건;최용제;최두호;김민호;김호원
    • 한국정보통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.76-89
    • /
    • 2013
  • 본 논문에서는 RSA를 몽고메리 지수승 기반의 하드웨어로 구현함에 있어 광학 오류 주입 공격을 탐지할 수 있는 기술을 제안한다. 본 기법은 몽고메리 곱셈 기반의 연산에서 메모리 입출력에 오류가 주입되었는지 확인하기 위해 무결성 검증 절차를 구현하였으며, 곱셈 연산에는 사용되는 로직에 광학 오류 주입 탐지 기법을 적용함으로써 안전한 지수승 연산을 가능하도록 하였다. 제안한 기법은 다양한 오류에 대하여 안전한 것으로 확인되었으며, 암호화 연산 수행시간에 영향을 미치지 않으며, 전체 면적 대비 3% 미만의 오버헤드로 구현 가능하다.

결함허용 실시간 시스템 구조에 대한 설계 및 구현 (Design and Implementation of a Architecture For Fault-Tolerant and Real-Time System)

  • 유종상;김범식;신인철
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 1997년도 추계학술대회 발표논문집:21세기를 향한 정보통신 기술의 전망
    • /
    • pp.417-433
    • /
    • 1997
  • A real-time operating system has focused primary on techniques to minimize processing time, with a secondary emphasis on system reliability issues. Conversely, fault-tolerant system has concentrated on using recourse and information redundancy to maximize the availability and reliability of the system, with a lesser emphasis on performance. We have developed a fault-tolerant and real-time operations system which support a powerful concurrent runtime environment under the above requirements. In this paper, we present an overview of real-time systems, design and implementation of a duplex architecture using advanced concepts and technologies such as fast " fault detection", "fault isolation" and "fault recovery" Because the duplex architecture has two dentical hardware elements and has several recovery steps and hierarchy to facilitate a fast recovery which must be proceeded by a prompt fault detection and isolation. Thus it makes possible to minimize the overhead of the systems including hardware and software and guarantee the service continuity of he systems.

  • PDF

Fault-Tolerance를 위한 시스템의 동작방식에 대한 비교 연구 (Comparative Study of the System Operational Method for Fault-Tolernace)

  • 양성현;이기서
    • 한국통신학회논문지
    • /
    • 제17권11호
    • /
    • pp.1279-1289
    • /
    • 1992
  • 고장 방지 시스템은 하드웨어나 소프트웨어의 여분 (Redundancy)을 이용하여 신뢰도(Reliability) 및 안전도(Safety)를 향상 시킨다. 시스템의 대상 영역(application areas)에 따라 고장 마스크(fault mask), 고장검출(fault detection), 고장 확인(fault identification)등의 기법을 선택하여 이용한다. 본 연구에서는 최소의 하드웨어와 소프트웨어의 여분을 이용하는 DMR(Double Modular Redundancy) 시스템을 대기 모듈(standby module)과 Fail-safe 모듈로 동작 시킬때 신뢰도와 안전도의 특성을 비교 제시한다. 또한 자기 진단 프로그램의 과도 오류 방지 능력에 대한 시스템의 MTTF를 비교함으로서 과도 오류를 취급하는 효과적인 방법을 제시하였다.

  • PDF

Detection and Diagnosis Solutions for Fault-Tolerant VSI

  • Cordeiro, Armando;Palma, Joao C.P.;Maia, Jose;Resende, Maia J.
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1272-1280
    • /
    • 2014
  • This paper presents solutions for fault detection and diagnosis of two-level, three phase voltage-source inverter (VSI) topologies with IGBT devices. The proposed solutions combine redundant standby VSI structures and contactors (or relays) to improve the fault-tolerant capabilities of power electronics in applications with safety requirements. The suitable combination of these elements gives the inverter the ability to maintain energy processing in the occurrence of several failure modes, including short-circuit in IGBT devices, thus extending its reliability and availability. A survey of previously developed fault-tolerant VSI structures and several aspects of failure modes, detection and isolation mechanisms within VSI is first discussed. Hardware solutions for the protection of power semiconductors with fault detection and diagnosis mechanisms are then proposed to provide conditions to isolate and replace damaged power devices (or branches) in real time. Experimental results from a prototype are included to validate the proposed solutions.

Rotor Fault Detection System for Inverter Driven Induction Motors using Currents Signals and an Encoder

  • Kim, Nam-Hun
    • Journal of Power Electronics
    • /
    • 제7권4호
    • /
    • pp.271-277
    • /
    • 2007
  • In this paper, an induction motor rotor fault diagnosis system using current signals, which are measured using the axis-transformation method is presented. Inverter-fed motor drives, unlike line-driven motor drives, have stator currents which are rich in harmonics and therefore fault diagnosis using stator current is not trivial. The current signals for rotor fault diagnosis need precise and high resolution information, which means the diagnosis system demands additional hardware such as a low pass filter, high resolution ADC, an encoder and additional hardware. Therefore, the proposed axis-transformation method is expected to contribute to a low cost fault diagnosis system in inverter-fed motor drives without the need for any additional hardware. In order to confirm the validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation, using the Park transformation, is compared with the results obtained from the FFT(Fast Fourier Transform).

중첩모델 기반 레이저 관성항법장치 고장검출 기법 (Fault Detection Method of Laser Inertial Navigation System Based on the Overlapping Model)

  • 김천중;유기정;김현석;유준
    • 제어로봇시스템학회논문지
    • /
    • 제17권11호
    • /
    • pp.1106-1116
    • /
    • 2011
  • LINS (Laser Inertial Navigation System) consists of RLG (Ring Laser Gyroscopes)/accelerometers and provides real-time navigation information to the target system. Therefore it is very important to make a decision in the real time whether LINS is in the normal operation or not. That is called a fault detection method. In this paper, we propose the fault detection method of LINS based on the overlapping model. We also show that the fault detection probability is increased through overlapping the hardware model and the software model. It is verified through the long-term operation and RAM (Reliability Availability Maintainability) analysis of LINS that the fault detection method proposed in this paper is able to detect about 97% of probable system failures.

Two-Faults Detection and Isolation Using Extended Parity Space Approach

  • Lee, Won-Hee;Kim, Kwang-Hoon;Park, Chan-Gook;Lee, Jang-Gyu
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.411-419
    • /
    • 2012
  • This paper proposes a new FDI(Fault Detection and Isolation) method, which is called EPSA(Extended Parity Space Approach). This method is particularly suitable for fault detection and isolation of the system with one faulty sensor or two faulty sensors. In the system with two faulty sensors, the fault detection and isolation probability may be decreased when two faults are occurred between the sensors related to the large fault direction angle. Nonetheless, the previously suggested FDI methods to treat the two-faults problem do not consider the effect of the large fault direction angle. In order to solve this problem, this paper analyzes the effect of the large fault direction angle and proposes how to increase the fault detection and isolation probability. For the increase the detection probability, this paper additionally considers the fault type that is not detected because of the cancellation of the fault biases by the large fault direction angle. Also for the increase the isolation probability, this paper suggests the additional isolation procedure in case of two-faults. EPSA helps that the user can know the exact fault situation. The proposed FDI method is verified through Monte Carlo simulation.