• Title/Summary/Keyword: hardening time

Search Result 470, Processing Time 0.025 seconds

Finite Element Analysis of Superplastic Forming Processes Considering Grain Growth (I) (결정립 성장을 고려한 초소성 성형공정의 유한요소해석(I))

  • Kim, Y.G.;Song, J.S.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • Finite element simulations were conducted to investigate the influence of grain growth in the superplastic blow forming process. A microstructure-based constitutive model considering grain growth effects is proposed and used in the simulations. Also, a grain growth rate equation accounting for both static and dynamic grain growth is implemented. The simulations were made using a 2D plane-strain model for constrained blow forming and an axisymmetric model for free bulging. These two models showed different features during the forming stages. However, the forming pressure-time curve and the thickness distribution obtained by both simulations explained well the deformation hardening induced by the grain growth during superplastic forming. This study shows that grain growth is an important factor in determining the material behavior during superplastic deformation.

Assessment of Early-age Properties of Mortar by Monitoring of Ultrasonic Pulse Velocity (초음파 속도 모니터링에 의한 모르터의 초기재령 특성 평가)

  • 이회근;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.245-250
    • /
    • 2001
  • Ultrasonic pulse velocity(UPV) is a useful tool for examining the property of early-age mortar or concrete. Thus, UPV has been used for a long time to characterize setting and hardening of cementitious materials. In this study, in order to investigate the characteristics of setting for mortar, UPV was measured using automatic monitoring system up to 3 days after casting. Test results show that UPV of high water to binder ratio(w/b) mortar remained constant at the beginning of hydration and then abruptly began to increase. However, UPV of low w/b mortar gradually increase due to setting retard caused by use of superplasticizer. Furthermore, the development of UPV for mortar with fly ash is slower than that of mortar without fly ash. It was concluded that the property change of mortar or concrete, such as setting and hardening can be assessed by monitoring of UPV.

  • PDF

Development of Low Pressure Carburizing and High Pressure Gas Quenching System (뺏치식 저압침탄 고압가스냉각 시스템 개발)

  • Jang, Byoung-Lok;Han, Hyoung-Ki;Kim, Won-Bae;Dong, Sang-Keun;Kim, Han-Suck;Cho, Han-Chang
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.78-84
    • /
    • 2005
  • The development of eco-friendly low pressure carburizing system with high pressure gas quenching (LPC_GQ, 500kg/charge) led to new stage in the fundamental case-hardening treatments. This is due to its ability to provide tighter tolerances on the carburizing process with notable reductions in distortion of the carburized and hardened workpiece. This system is characteristics by high uniformity and reproducibility of heat treatment results, absence of an intergranular oxidation layer, carburizing of complex shapes, reduced cycle time, low operating costs, simplified production, eliminate post washing, and reduced grinding costs.

  • PDF

The Properties of Rheology of Underwater-Hardening Epoxy Resin According to the Temperature and Hardener Ratio (온도 및 경화제 비율에 따른 수중경화형 에폭시수지의 레올로지 특성)

  • Jung Eun Hye;Kwag Eun Gu;Lee Dae Kyung;Cho Sung Hyun;Bae Kee Sun;Kim Jin Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.761-764
    • /
    • 2005
  • Epoxy resin, as no-hardening, applied for repair and finish materials is used to mix together with hardener. It is advantages that epoxy resin has reaction shrinkage less than other materials and has excellent in water proofing, thermal resistance. The other hands, because ratio of combination of epoxy resin and hardener is fixed, it is not possible to change according to field condition. This investigated suspended time by temperature and hardener ratio. As a results of study, it can select economical ratio of the epoxy resin and hardener according to site situation.

  • PDF

Comparative Study on Test Method of Pot Life of Structural Adhesives for FRP Composite Material used in Strengthening RC Members (구조보강용 FRP 함침.접착수지의 사용가능시간 시험방법 비교 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.353-356
    • /
    • 2006
  • Hardening of 2 component adhesive such as epoxy resin used in saturating FRP composite is triggered by mixing each component part within a batch. Chemical reactions occur explosively after a certain time after mixing the batch, viscosity and temperature rapidly increase. As a results, bond performance remarkably decreases and workability declines due to increase in viscosity. Therefore, adhesion should be completed before chemical hardening reaction is rapidly going on. This study examined pot life of structural adhesive for FRP composites by means of change in apparent viscosity and means of exothermic reaction temperature proposing in existing test standards. Result of each test method was compared and analyzed, and reasonable test method and evaluation method are suggested.

  • PDF

Accuracy of Capacity Spectrum Method for Building Structures (건축 구조물에 대한 능력스펙트럼법의 정확성 연구)

  • Min, Kyung-Won;Lee, Sang-Hyun;Park, Min-Kyu;Lee, Young-Chul;Jung, Ran
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.27-34
    • /
    • 2003
  • Capacity Spectrum Method (CSM) defined in ATC-40 or FEMA-273 is a most widely used static inelastic analysis method to evaluate the performance level of the existing structures. In CSM, however, uncertainties and errors exist when lateral forces such as earthquake and wind loads are analyzed into equivalent static loads. This paper examines the accuracy of CSM for different structural parameters, such as natural frequency, yield strength and hardening ratio, and various soil conditions by comparing the estimated values to exact solutions obtained by time history analysis. Results indicate that the accuracy of CSM, in general, is influenced mostly by hardening ratio.

  • PDF

A Study on the Spot Weldability of High Strength Steel Sheet and Two Stories Galvannealed High Strength Steel Sheet (고장력강판 및 2층아연도금된 고장력 강판의 점용접성에 관한 연구)

  • 신현일;강성수
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.56-62
    • /
    • 1994
  • The spot weldability of high strength steel sheet and two stories galvannealed high strength steel sheet has been studied. 1) Tensile shear strength decreased inversely as welding current increased over 12KA in the case of two stories galvannealed high strength steel sheet. 2) When heat flux input over 12KA, hardening region become narrow in case of two stories galvannealed high strength steel sheet. 3) The size of hardening region affect the strength of nuggets.

  • PDF

Surface Hardening Technology of the Metal by High Temperature Pulsed Plasma Flux (High Temperature Pulsed Plasma Flux 응용 금속 표면경화 공정기술)

  • 권식철;채병규;이건환;백운승
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.375-378
    • /
    • 2001
  • The new development of the surface hardening technology has been attracted to machine designer and materials scientist in the view point of improvement in the lifetime and performance of the machine. The heat-treatment process has been a well-known technology to make harden the metal surface despite of its inefficiency in productivity and its inherent environmental pollution problem. Therefore, the plasma technology has been applied to the conventional process to improve the above issues and become successful in diminishing the ecological harmfulness. However, the drastic short processing time has been sought to increase the productivity by means of new plasma technology so-called, high temperature pulsed plasma flux (HTPPF). The basic principle and features of this HTPPF will be introduced and the present status of this technology will be described in this paper.

  • PDF

Development of High Performance Low Pressure Carburizing System (Batch type 가스침탄 열처리로 국산화개발)

  • Kim, Won-Bae;Dong, Sang-Keun;Jang, Byoung-Lok;Han, Hyoung-Ki;Kim, Han-Suck;Cho, Han-Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.5
    • /
    • pp.262-269
    • /
    • 2006
  • The development of eco-friendly low pressure carburizing system with high pressure gas quenching(LPC-GQ, 500kg/charge) led to new stage in the fundamental case-hardening treatments. This is due to its ability to provide tighter tolerances on the carburizing process with notable reductions in distortion of the carburized and hardened workpiece. This system is characteristics by high uniformity and reproducibility of heat treatment results, absence of an intergranular oxidation layer, carburizing of complex shapes, reduced cycle time, low operating costs, simplified production, eliminate post washing, and reduced grinding costs.

Setting and Hydroxyapatite Formation of Bioactive Glass Bone Cement (생체활성 유리 골 시멘트의 응결 및 수산화 아파타이트 형성)

  • Lim, Hyoung-Bong;Kim, Cheol-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.770-776
    • /
    • 2005
  • Hardening and hydroxyapatite(HAp) formation behavior of the bioactive cements in the system of $CaO-SiO_{2}-P_{2}O_{5}$ glasses and the corresponding glass-ceramics were studied. DCPD (Dicalcium Phosphate Dihydrate: $CaHPO_4{\cdot}2H_2O$) and DCPA (Dicalcium Phosphate Anhydrous: $CaHPO_4$) were developed when the prepared glass and glass-ceramic powders were mixed with three different solutions. The DCPD and DCPA transformed to HAp when the cement was soaked in Simulated Body Fluid (SBF), and this HAp formation strongly depended on the releasing capacity of $Ca^{2+}$ ions from the cements. The glass-ceramic containing apatite showed fast setting, but no HAp formation was observed because no $Ca^{2+}$ ions were released from this glass-ceramics. The compressive strength of the cements increased with reaction time in SBF until all DCPD and DCPA transformed to HAp.