• Title/Summary/Keyword: hardening mechanism

Search Result 121, Processing Time 0.028 seconds

Temperature and Dependence of the Microhardness of Rhenium Sheets (리늄판의 미세경도 온도 및 응력의존성)

  • Yun, Seok-Yeong;Lagerlof, K.P.D.
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.335-342
    • /
    • 2000
  • The microhardness of rhenium sheets was determined as a function of indentation load and temperature. The temperature dependence of the microhardness between room temperatures and $1000 ^{\circ}C$was studied using a hot microhardness tester equipped with a Vickers indenter. The load dependence of the microhardness was investigated using oth a Vickers and a Knoop indenter. The indentation size effect (ISE) was well explained using the normalized Meyers law. The hardness of the annealed rhenium sheet approached that of the as-rolled sheets at large indentation loads because of work-hardening under the indenter during indentation. The hardness at zero load(obtained from extrapolation of the load dependence of the hardness) suggested that the hardness is controlled by two different mech-anisms having different thermal activation. At low temperature the activation energy for the mechanism controlling the hardness was approximately 0.02 eV , Whereas at higher temperatures that was approximately 0.15eV. The tranisi-tion temperature between the two different controlling mechanisms was about $250^{\circ}C$.

  • PDF

Observation of Tribologically Transformed Structures and fretting Wear Characteristics of Nuclear Fuel Cladding (핵연료 봉의 마찰변태구조 관찰과 프레팅 마멸 특성)

  • Kim, Kyeong-Ho;Lee, Min-Ku;Rhee, Chang-Kyu;Wey, Myeong-Yong;Kim, Whung-Whoe
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2581-2589
    • /
    • 2002
  • In this research, fretting tests were conducted in air to investigate the wear characteristics of fuel cladding materials with the fretting parameters such as normal load, slip amplitude, frequency and the number of cycles. A high frequency fretting wear tester was designed for this experiment by KAERI. After the experiments, the wear volume and the shape of wear contour were measured by the surface roughness tester. Tribologically transformed structures(TTS) were analysed by means of optical and scanning electron microscopes to identify the main wear mechanisms. The results of this study showed that the wear volume were increased with increasing slip amplitude, and the shape of wear contour was transformed V-type to W-type. Also, it was found that the critical slip amplitude was 168${\mu}{\textrm}{m}$. These phenomena mean that wear mechanism transformed partial slip to gross slip to accelerate wear volume. The wear depth increased with an increase of friction coefficient due to increase of normal load and frequency. The fretting wear mechanisms were believed that, after adhesion and surface plastic deformation occurred by relative sliding motion on the contact between two specimens, TTS creation was induced by surface strain hardening and wear debris were detached from the contact surface which were produced by the micro crack propagation and creation.

Analysis of Creep Effective Stress in Austenitic Heat Resistant Steel (오스테나이트계 내열강의 크리프 유효응력 해석)

  • Nam, Ki-Woo;Park, In-Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1317-1323
    • /
    • 2002
  • This paper describes the comparison of calculated effective stress with experimental one in austenitic heat resistant steels, STS310J1TB and STS310S with and without a small amount of Nb and N. Based on a solute atoms diffusion model, contribution from soluble nitrogen to the high-temperature strength was numerically examined for austenitic heat-resisting Fe-Cr-Ni-N(STS310J1TB) and Fe-Cr-Ni (STS310S) alloys. The solute atmosphere dragging stress of dislocation was calculated in optional dislocation velocity of STS310J1TB and STS310S at $650^{\circ}C$, $675^{\circ}C$ and $700^{\circ}C$. As a result of the numerical calculation, the solute atmosphere dragging stress of STS310J1TB was about 50 times larger than that of STS310S. When the temperature became high, the maximum value of solute atmosphere dragging stress was small and the velocity of moving dislocation was fast. From the relationship between the dislocation rate and the solute atmosphere dragging stress, the relation of both was proportional and the inclination is about 1 in the level with low velocity of moving dislocation. From above results, the mechanism of dislocation movement in STS310J1TB was the solute atmosphere dragging stress. The solute atmosphere dragging stress, which was calculated from the numerical calculation was close to the effect stress in stress relaxation tests.

The Influence of Dynamic Strain Aging on Tensile and LCF Properties of Prior Cold Worked 316L Stainless Steel (냉간가공된 316L 스테인리스 강의 인장 및 저주기 피로 물성치에 미치는 동적변형시효의 영향)

  • Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1398-1408
    • /
    • 2003
  • Tensile and LCF(low cycle fatigue) tests were carried out in air at wide temperature range 20$^{\circ}C$-750$^{\circ}C$ and strain rates of 1${\times}$10$\^$-4//s-1${\times}$10$\^$-2/ to ascertain the influence of strain rate on tensile and LCF properties of prior cold worked 316L stainless steel, especially focused on the DSA(dynamic strain aging) regime. Dynamic strain aging induced the change of tensile properties such as strength and ductility in the temperature region 250$^{\circ}C$-600$^{\circ}C$ and this temperature region well coincided with the negative strain rate sensitivity regime. Cyclic stress response at all test conditions was characterized by the initial hardening during a few cycles, followed by gradual softening until final failure. Temperature and strain rate dependence on cyclic softening behavior appears to result from the change of the cyclic plastic deformation mechanism and DSA effect. The DSA regimes between tensile and LCF loading conditions in terms of the negative strain rate sensitivity were well consistent with each other. The drastic reduction in fatigue resistance at elevated temperature was observed, and it was attributed to the effects of oxidation, creep and dynamic strain aging or interactions among them. Especially, in the DSA regime, dynamic strain aging accelerated the reduction of fatigue resistance by enhancing crack initiation and propagation.

Analysis of Mechanical Properties and Micro structure of Fly Ash Based Alkali-activated Mortar (플라이애쉬 기반(基盤) 알칼리 활성(活性) 모르타르의 역학적(力學的) 특성(特性) 및 미세구조(微細構造) 분석(分析))

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Chung, Young-Soo
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.28-38
    • /
    • 2012
  • The purpose of this paper is to develop the alkali-activated concrete which uses 100% fly ash as a binder without any cement. The compressive strength of the mortar was examined depending on the chemical change in alkali-activator through SEM and SEM/EDS observations and the XRD analysis. It was found from the test that the higher molar concentration induced the greater effect on the initial strength, and that $Si^{4+}$ and $Al^{3+}$ were eluted relative to the compressive strength of mortar. In addition, it was confirmed that Al and Si were determined to be most influential ingredients on the microstructural development of the mortar, and that the different ingredient of the activator was almost no change in solidity from the XRD analysis.

Numerical Evaluation of the Influence of Joint Roughness on the Deformation Behavior of Jointed Rock Masses (절리면의 거칠기 특성이 정리암반의 거동에 미치는 영향에 대한 수치해석적 연구)

  • 이연규
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.225-236
    • /
    • 2001
  • The roughness of rock joint is one of the most important parameters in developing the shear resistance and the tendency of dilation. Due to the damage accumulated with shearing displacement, the roughness angle is lowered continuously. It is known that dilation, shear strength hardening, and softening are directly related to the degradation of asperities. Much effort has been directed to incorporate the complicated damage mechanism of asperities into a constitutive model fur rock joints. This study presents an elasto-plastic formulation of joint behavior including elastic deformability, dilatancy and asperity surface damage. It is postulated that the plastic portion of incremental displacement 7an be decomposed into contributions from both sliding along the asperity surface and damage of asperity. Numerical cyclic shear tests are presented to illustrate th? performance of the derived incremental stress-displacement relation. A laboratory cyclic shear test is also simulated. Numerical examples reveal that the elasto-plastic joints model is promising.

  • PDF

A Study of Automobile Product Design using Hole Expansion Testing of High Strength Steels (고장력강의 구멍 확장 실험을 이용한 자동차부품 설계연구)

  • Park, B.C.;Bae, K.U.;Gu, S.M.;Jang, S.H.;Hong, S.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.337-343
    • /
    • 2010
  • Current need of weight reduction in automotive part increases the application for high strength steel (HSS). The various types of high strength steels have been used to produce chassis part, control arms and trailing arms for weight reduction and increasing of fatigue durability such as dual phase steel (DP) and ferrite bainite steel (FB). But, DP and FB steels have proven to show inferiority in durability as well as press formability. Edge cracking occurred often in flange forming and hole expansion processes is the major failure encountered. This paper discussed the behavior of edge stretchability of high strength steel of DP and FB steels. Experimental works have been conducted to study the effect of punch clearance and burr direction on hole expansion ratio (HER). Also finite element simulation (FEM) has been preformed to clarify the mechanism of flange crack and support the experimental results on HER of DP and FB steels. It was simulated the whole process of blanking process following by hole expansion process and ductile fracture criterion named the modified Cockcroft-Latham model which was used to capture the fracture initiation. From the hole expansion tests and FEM simulation studies it was concluded that ferrite bainite steel showed better stretch-flangeability than dual phase steel. It was attributed to the lower work hardening rate of ferrite bainite steel than dual phase steel at the sheared edge.

The Effect of Assisted Hatching (AHA) on Pregnancy Rates in Human IVF-ET (인간의 체외수정배아이식술에서 보조부화술이 임신률에 미치는 영향에 관한 연구)

  • Lee, H.J.;Kim, J.W.;Byun, H.K.;Jun, J.H.;Son, I.P.;Jun, J.Y.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.22 no.2
    • /
    • pp.183-189
    • /
    • 1995
  • In human IVF-ET, the development and morphology of the embryo have been known to affect implantation and pregnancy rates(PRs). Recently, pregnancy has been reported to related to the embryos with thick zona-pellucida, high levels of fragmentation, poor blastomere development and zona hardening. Although the mechanism of implantation is unclear, it is thought that the hatching process precedes implantation and that the hatching is related to implantation and PRs. This study was carried out to investigate the effect of assisted hatching(AHA) on the improvement of PRs in human IVF-ET. The results were as follows; 1. The PRs of the AHA group (40.8%) was significantly higher than that of control group(27.2%)(P<0.01). 2. According to the age of patients, the PRs of control and AHA groups were 33.9%(20/59), 44,4%(12/27) in <30 yrs, 26.1%(30/115), 38.3%(18/47) in 31-35 yrs, 22.4%(13/58), 41.4%(12/29) in >36 yrs, respectively. 3. According to the factors of infertility in AHA group, unexplained(immunologic factor) (40.0%) and male factors(41.9%) were higher than female(tubal obstruction, endometriosis, adhesion) factor (28.9%). As a result, it is suggested that AHA technique improve the PRs in poor prognosis patients. It is concluded that AHA method can be used to improve the PRs in human lVF-ET.

  • PDF

Microstructure and Properties of Ni-SiC Composite Coating Layers Formed using Nano-sized SiC Particles (SiC 나노입자를 이용하여 형성한 Ni-SiC 복합도금막의 미세구조 및 특성)

  • Lee, Hong-Kee;Son, Seong-Ho;Lee, Ho-Young;Jeon, Jun-Mi
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.63-69
    • /
    • 2007
  • Ni-SiC composite coating layers were formed using two kinds of SiC nano-particles by DC electrodeposition in a nickel sulfamate bath containing SiC particles. The effect of stirring rate and SiC particle type on the microstructure and properties of Ni-SiC composite coating layers were investigated. Results revealed that the trend of deposition rate is closely related to the codeposition of SiC and the deposition rate. or nickel, and the codeposition behavior of SiC can be explained by using hydrodynamic effect due to stirring. The average roughness and friction coefficient are closely related to the codeposition of SiC and SiC particle size. It was found that the Victors microhardness of the composite coating layers increased with increasing codeposition of SiC. The composite coating layers containing smaller SiC particle showed higher hardness. This can be explained by using the strengthening mechanism resulting from dispersion hardening. Anti-wear property of the composite coating layers formed using 130 nm-sized SiC nano-particles has been improved by 2,300% compared with pure electroplated-nickel layer.

Effect of an Aging Treatment on the Interfacial Reaction and Mechanical Properties of an AS52+Sr/Al18B4O33 Magnesium Matrix Composite (AS52+Sr/Al18B4O33 복합재료 계면반응 및 기계적 특성에 미치는 시효 열처리의 영향)

  • Park, YongHa;Park, YongHo;Park, IkMin;Cho, KyungMox
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.957-963
    • /
    • 2010
  • The aging behavior of aluminum borate whisker ($Al_{18}B_4O_{33}$) reinforced AS52+Sr magnesium matrix composites was investigated with Vickers hardness measurements, bending tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Experimental results showed that aging is accelerated in the $AS52+Sr/Al_{18}B_4O_{33}$ composite compared with an unreinforced AS52+Sr alloy. The hardness of the alloy and composite increases monotonically as a function of the aging time before reaching its peak hardness and then gradually decreases. The composite reaches its peak hardness in 10 h, whereas the matrix alloy requires 30h, indicating accelerated age-hardening in the $AS52+Sr/Al_{18}B_4O_{33}$ composite compared with the unreinforced AS52+Sr alloy at $170^{\circ}C$. The interfacial reaction of $AS52+Sr/Al_{18}B_4O_{33}$ magnesium matrix composite is considered to play a dominant role in the strengthening mechanism, ultimately affecting the mechanical properties of the composite.