• Title/Summary/Keyword: hard nonlinearity

Search Result 32, Processing Time 0.026 seconds

Finite Element Analysis of Nonlinear Behavior of a Column Type Sensing Element for Load Cell According to Design Parameters (기둥형 로드셀 감지부의 설계변수에 따른 비선형 거동해석)

  • Lee, Chun-Yeol;Gang, Dae-Im
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1540-1546
    • /
    • 2000
  • Recently, force measurement systems are commonly used in many industrial fields and the precision of the measurement system is getting more important as the industry needs more precise tools and in struments to make high quality products. However, a high precision force measurement system is hard to make unless we know precisely the causes, quality and quantity of measurement errors in advance. In this work, many possible mechanical causes of measurement errors are reviewed including ratio of length to diameter of sensing part, radius of contact area, radius of bearing part, ratio of material properties and change of boundary conditions. Also, the measurement errors are analyzed by nonlinear finite element method and the nonlinear behavior of the errors are investigated. The results can be used to design force measurement systems and expected to be very useful especially for compact type load cells.

The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index (유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계)

  • Oh, Sung-Kwun;Yoon, Ki-Chan;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF

The Effect of Worker Heterogeneity in Learning and Forgetting on System Productivity (학습과 망각에 대한 작업자들의 이질성 정도가 시스템 생산성에 미치는 영향)

  • Kim, Sungsu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.4
    • /
    • pp.145-156
    • /
    • 2015
  • Incorporation of individual learning and forgetting behaviors within worker-task assignment models produces a mixed integer nonlinear program (MINLP) problem, which is difficult to solve as a NP hard due to its nonlinearity in the objective function. Previous studies commonly assume homogeneity among workers in workforce scheduling that takes account of learning and forgetting characteristics. This paper expands previous researches by considering heterogeneous individual learning/forgetting, and investigates the impact of worker heterogeneity in initial expertise, steady-state productivity, learning and forgetting on system performance to assist manager's decision-making in worker-task assignments without tackling complex MINLP models. In order to understand the performance implications of workforce heterogeneity, this paper examines analytically how heterogeneity in each of the four parameters of the exponential learning and forgetting (L/F) model affects system performance in three cases : consecutive assignments with no break, n breaks of s-length each, and total b break-periods occurred over T periods. The study presents the direction of change in worker performance under different assignment schedules as the variance in initial expertise, steady-state productivity, learning or forgetting increases. Thus, it implies whether having more heterogenous workforce in terms of each of four parameters in the L/F model is desired or not in different schedules from the perspective of system productivity measurement.

NSG : A Security Enhancement of the E0 Cipher Using Nonlinear Algorithm in Bluetooth System (NSG : 비선형 알고리즘을 이용한 블루투스 E0 암호화시스템의 성능 개선)

  • Kim, Hyeong-Rag;Lee, Hun-Jae;Moon, Sang-Jae
    • The KIPS Transactions:PartC
    • /
    • v.16C no.3
    • /
    • pp.357-362
    • /
    • 2009
  • Summation generator can be easily made as a simple hardware or software and it's period and linear complexity are very high. So it is appropriate to mobile security system for ubiquitous environment. But it showed us the weakness by Golic's correlation attack and Meier's fast correlation attack. In this paper, we proposed a Nonlinear Summation Generator(NSG), which is improved by using LFSR and NFSR(nonlinear feedback shift register), is different from $E_0$ algorithm which use only LFSR in summation generator. It enhanced nonlinearity and is hard to decipher even though the correlation attack or fast correlation attack. We also analyzed the security aspects and the performances for the proposed algorithm.

European Experience in Implementing Innovative Educational Technologies in the Training of Management Specialists: Current Problems and Prospects for Improvement

  • Tatiana, Voropayeva;Marina, Jarvis;Svitlana, Boiko;Hanna, Tolchieva;Nataliia, Statsenko
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.294-300
    • /
    • 2022
  • The article highlights the European experience of innovative educational technologies of training management specialists. Based on existing strategies, relevant in the European educational space, the introduction of regulatory elements to maintain a balance between the traditional and innovative format of the educational process, which is typical for the Ukrainian education system is proposed. The article aims to single out educational and technological innovations into a separate cluster of managerial training at different levels in the context of the principles of the modern synergetic sociocultural paradigm. The main objectives of the work are to develop settings to ensure the effective functioning of innovative educational technologies. Among the synergetic principles of educational technologies, providing the formation of necessary competencies of future managers, are: self-organization, interdisciplinarity, nonlinearity, individuality, and technologization. The methods used in the scientific study can be attributed to the group of scientific synergetic methodology. So, the training of specialists in management, implemented in the European practice assumes the use of new educational strategies. These technologies provide both the necessary skills of different levels (hard-soft-digital skills) and the observance of value components (solidarity, ethics, inclusiveness, openness).

Implementation of Fuzzy Controller for MFC (MFC의 퍼지제어기 구현)

  • Lee, Seok-Ki;Lee, Yun-Jung;Lee, Seung-Ha
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.648-654
    • /
    • 2004
  • The Mass Flow Controller(MFC) has become crucial in semiconductor manufacturing equipments. It is an important element because the quality and the yield of a semiconductor process are decided by the accurate flow control of gas. Therefore, the demand for implementing the high speed and the highly accurate control of MFCs has been increasing. It is hard to find an article of the control algorithm applied to MFCs. But, it is known that commercially available MFCs adopt PID control algorithms. Particularly, when the system detects the flow by way of heat transfer, the MFC control problem includes the slow response and the nonlinearity. In this paper, MFC control algorithm with a superior performance to the conventional PID algorithm is discussed and the superiority is demonstrated through the experiment. A fuzzy controller was utilized in order to compensate the nonlinearity and the slow response, and the performance is compared with that of an MFC currently available in the market. The control system, in this paper, consists of a personal computer, the data acquisition board and the control algorithm carried out by LabWindows/CVI program on the PC. In addition, a method of estimating the actual flow from the sensor output with the slow response is presented. In conclusion, according to the result of the experiment, the proposed algorithm shows better accuracy and is faster than the conventional controller.

Optimal Design of Fuzzy-Neural Networkd Structure Using HCM and Hybrid Identification Algorithm (HCM과 하이브리드 동정 알고리즘을 이용한 퍼지-뉴럴 네트워크 구조의 최적 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.339-349
    • /
    • 2001
  • This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

Determination of structural behavior of Bosporus suspension bridge considering construction stages and different soil conditions

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet Can;Sevim, Baris;Turker, Emel
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.405-429
    • /
    • 2014
  • In this paper, it is aimed to determine the structural behavior of suspension bridges considering construction stages and different soil conditions. Bosporus Suspension Bridge connecting the Europe and Asia in Istanbul is selected as an example. Finite element model of the bridge is constituted using SAP2000 program considering existing drawings. Geometric nonlinearities are taken into consideration in the analysis using P-Delta large displacement criterion. The time dependent material strength of steel and concrete and geometric variations is included in the analysis. Time dependent material properties are considered as compressive strength, aging, shrinkage and creep for concrete, and relaxation for steel. To emphases the soil condition effect on the structural behavior of suspension bridges, each of hard, medium and soft soils are considered in the analysis. The structural behavior of the bridge at different construction stages and different soil conditions has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. At the end of the analyses, variation of the displacement and internal forces such as bending moment, axial forces and shear forces for bridge deck and towers are given in detail. Also, displacement and stresses for bridge foundation are given with detail. It can be seen from the analyses that there are some differences between both analyses (with and without construction stages) and the results obtained from the construction stages are bigger. It can be stated that the analysis without construction stages cannot give the reliable solutions. In addition, soil condition have effect on the structural behavior of the bridge. So, it is thought that construction stage analysis using time dependent material properties, geometric nonlinearity and soil conditions effects should be considered in order to obtain more realistic structural behavior of suspension bridges.

Algorithm of Flying Control System for Level Flight using Min-Design Method on UAV (민(MIN) 설계 방법을 이용한 무인기 수평이동제어 알고리즘에 관한 연구)

  • Wang, Hyun-Min;Huh, Kyung-Moo;Woo, Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.59-65
    • /
    • 2009
  • Recently, UAV(unmanned aerial vehicle) has evolved into various figure and become miniaturized. On using existing design method, it is hard to make modelling and standardizing design of flight control system of the figure including cylinder like pipe. These problems are caused by uncorrect express of nonlinearity in controller design. Therefore, it is developed through step of correct modelling and simulation on real time sing high efficiency computer in aircraft development of various figure. This is reducing period and expense of aircraft development. For the shake of solving these problems, in-design method has been devised by H.M. Wang. In this paper, an object of control is cylindrical UAV instead of the general figure of aircraft. It was analyzed flight condition, specification about level flight of the UAV and was presented algorithm to find control value.

Mid-course Trajectory Optimization for Boost-Glide Missiles Based on Convex Programming (컨벡스 프로그래밍을 이용한 추진-활공 유도탄의 중기궤적 최적화)

  • Kwon, Hyuck-Hoon;Hong, Seong-Min;Kim, Gyeong-Hun;Kim, Yoon-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • Mid-course trajectory of the missiles equipped with seeker should be designed to detect target within FOV of seeker and to maximize the maneuverability at the point of transition to terminal guidance phase. Because the trajectory optimization problems are generally hard to obtain the analytic solutions due to its own nonlinearity with several constraints, the various numerical methods have been presented so far. In this paper, mid-course trajectory optimization problem for boost-glide missiles is calculated by using SOCP (Second-Order Cone Programming) which is one of convex optimization methods. At first, control variable augmentation scheme with a control constraint is suggested to reduce state variables of missile dynamics. And it is reformulated using a normalized time approach to cope with a free final time problem and boost time problem. Then, partial linearization and lossless convexification are used to convexify dynamic equation and control constraint, respectively. Finally, the results of the proposed method are compared with those of state-of-the-art nonlinear optimization method for verification.