• Title/Summary/Keyword: hard coatings

Search Result 130, Processing Time 0.037 seconds

Effect of Solvents on the Photochromic Properties of Spiropyran in Hard Coating Films Prepared by Sol-Gel Method (Spiropyran의 분산용매가 Sol-Gel 하드 코팅 막의 광 변색 특성에 미치는 영향)

  • Kim, Dae Hyun;Shin, Yong Tak;Lee, Ju Yeon;Hong, Wongil;Lee, Bum Suk;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.430-435
    • /
    • 2009
  • Spiropyran-doped organic-inorganic hybrid coatings were prepared starting from glycidoxypropyl triethoxysilane and vinyltriethoxysilane by a sol-gel method. They were applied as a thin layer to polycarbonate sheets and their photochromic properties were investigated. The effect of polarity of solvents dissolving the spiropyran was investigated on the photochromic properties. The decoloration rate of the spiropyran decreased with increasing the polarity of solvents dissolving the spiropyran because the open form of the spiropyran was easily stabilized in the polar gel matrix.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

Bone-like Apatite Morphology on Si-Zn-Mn-hydroxyapatite Coating on Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Park, Min-Gyu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.158-158
    • /
    • 2017
  • Titanium and its alloys have been used in the field dental and orthopedic implants because of their excellent mechanical properties and biocompatibility. Despite these attractive properties, their passive films were somewhat bioinert in nature so that sufficient adhesion of bone cells to implant surface was delayed after surgical treatment. Recently, plasma electrolyte oxidation (PEO) of titanium metal has attracted a great deal of attention is a comparatively convenient and effective technique and good adhesion to substrates and it enhances wear and corrosion resistances and produces thick, hard, and strong oxide coatings. Silicon(Si), Zinc(Zn), and Manganese(Mn) have a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. And, Zn has been shown to be responsible for variations in body weight, bone length and bone biomechanical properties. Also, Mn influences regulation of bone remodeling because its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. The objective of this work was research on bone-like apatite morphology on Si-Zn-Mn-hydroxyapatite coating on Ti-6Al-4V alloy by plasma electrolytic oxidation. Anodized alloys were prepared at 280V voltage in the solution containing Si, Zn, and Mn ions. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, and EDS.

  • PDF

High aspect ratio wrinkled patterns on polymers by glancing angle deposition

  • Ko, Tae-Jun;Ahmed, Sk. Faruque;Lee, Kwang-Ryeol;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.335-335
    • /
    • 2011
  • Instability of a thin film attached to a compliant substrate often leads to emergence of exquisite wrinkle patterns with length scales that depend on the system geometry and applied stresses. However, the patterns that are created using the current techniques in polymer surface engineering, generally have low aspect ratio of undulation amplitude to wavelength, thus, limiting their application. Here, we present a novel and effective method that enables us to create wrinkles with a desired wavelength and high aspect ratio of amplitude over wavelength as large as to 2.5:1. First, we create buckle patterns with high aspect ratio of amplitude to wavelength by deposition of an amorphous carbon film on a surface of a soft polymer poly(dimethylsiloxane) (PDMS). Amorphous carbon films are used as a protective layer in structural systems and biomedical components, due to their low friction coefficient, strong wear resistance against, and high elastic modulus and hardness. The deposited carbon layer is generally under high residual compressive stresses (~1 GPa), making it susceptible to buckle delamination on a hard substrate (e.g. silicon or glass) and to wrinkle on a flexible or soft substrate. Then, we employ glancing angle deposition (GLAD) for deposition of a high aspect ratio patterns with amorphous carbon coating on a PDMS surface. Using this method, pattern amplitudes of several nm to submicron size can be achieved by varying the carbon deposition time, allowing us to harness patterned polymers substrates for variety of application. Specifically, we demonstrate a potential application of the high aspect wrinkles for changing the surface structures with low surface energy materials of amorphous carbon coatings, increasing the water wettability.

  • PDF

Formation of Anodic Films on Pure Mg and Mg alloys for Corrosion Protection

  • Moon, Sungmo;Nam, Yunkyung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.16-16
    • /
    • 2012
  • Mg and its alloys have been of great interest because of their low density of 1.7, 30% lighter than Al, but their wide applications have been limited because of their poor resistances against corrosion and/or abrasion. Corrosion resistance of Mg alloys can be improved by formation of anodic films using anodic oxidation method in aqueous electrolytes. Plasma electrolytic oxidation (PEO) is one of anodic oxidation methods by which hard anodic films can be formed as a result of micro-arc generation under high electric field. PEO method utilize not only substrate elements but also chemical components in electrolytes to form anodic films on Mg alloys. PEO films formed on AM50 magnesium alloy in an acidic fluozirconate electrolyte were observed to consist of mainly $ZrO_2$ and $MgF_2$. Liu et al reported that PEO coating on AM30 Mg alloy consists of $MgF_2$-rich outer porous layer and an MgO-rich dense inner layer. PEO films prepared on ACM522 Mg die-casting alloy in an aqueous phosphate solution were also reported to be composed of monoclinic $Mg_3(PO_4)_2$. $CeO_2$-incorporated PEO coatings were also reported to be formed on AZ31 Mg alloys in $CeO_2$ particle-containing $Na_2SiO_3$-based electrolytes. Magnesium tin hydroxide ($MgSn(OH)_6$) was also produced on AZ91D alloy by PEO process in stannate-containing electrolyte. Effects of $OH^-$, $F^-$, $PO{_4}^{3-}$ and $SiO{_3}^{2-}$ ions and alloying elements of Al and Sn on the formation of PEO films on pure Mg and Mg alloys and their protective properties against corrosion have been investigated in this work. $PO{_4}^{3-}$, $F^-$ and $SiO{_3}^{2-}$ ions were observed to contribute to the formation of PEO films but $OH^-$ ions were found to break down the surface films under high electric field. The effect of pulse current on the formation of PEO films will be also reported.

  • PDF

Physical stability of arginine-glycine-aspartic acid peptide coated on anodized implants after installation

  • Huh, Jung-Bo;Lee, Jeong-Yeol;Jeon, Young-Chan;Shin, Sang-Wan;Ahn, Jin-Soo;Ryu, Jae-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.84-91
    • /
    • 2013
  • PURPOSE. The aim of this study was to evaluate the stability of arginine-glycine-aspartic acid (RGD) peptide coatings on implants by measuring the amount of peptide remaining after installation. MATERIALS AND METHODS. Fluorescent isothiocyanate (FITC)-fixed RGD peptide was coated onto anodized titanium implants (width 4 mm, length 10 mm) using a physical adsorption method (P) or a chemical grafting method (C). Solid Rigid Polyurethane Foam (SRPF) was classified as either hard bone (H) or soft bone (S) according to its density. Two pieces of artificial bone were fixed in a customized jig, and coated implants were installed at the center of the boundary between two pieces of artificial bone. The test groups were classified as: P-H, P-S, C-H, or C-S. After each installation, implants were removed from the SRPF, and the residual amounts and rates of RGD peptide in implants were measured by fluorescence spectrometry. The Kruskal-Wallis test was used for the statistical analysis (${\alpha}$=0.05). RESULTS. Peptide-coating was identified by fluorescence microscopy and XPS. Total coating amount was higher for physical adsorption than chemical grafting. The residual rate of peptide was significantly larger in the P-S group than in the other three groups (P<.05). CONCLUSION. The result of this study suggests that coating doses depend on coating method. Residual amounts of RGD peptide were greater for the physical adsorption method than the chemical grafting method.

Study on Ni-Cr Electro Plating Process for Staged Combustion Cycle Engine (다단연소사이클 엔진 적용을 위한 Ni-Cr 코팅에 관한 연구)

  • Bae, Byung-Hyun;Hwang, Yang-Jin;Lee, Kyu-Hwan;Rhee, Byong-ho;Han, Yeoung-Min;Kim, Young-June;Noh, Yong-Oh;Cho, Hwang-Rae;Hyun, Seong-Yoon;Bang, Jeong-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.857-863
    • /
    • 2017
  • In this paper, the process of electro Ni and electro Cr plating is studied for the purpose of thermal barrier to protect the inner wall combustion chamber. The chamber is under the environment of very high temperature and high pressure when propellants burn in there. As one of the thermal barrier coatings, Zr-based thermal spray coating has been applied to the chamber. However, peeling of coating layer can occur under such a hard condition because of the difference of thermal expansion coefficients between the ceramic and the metallic wall. We study the characteristics of Ni-Cr coating and establish its process. It is found that the thickness of over $100{\mu}m$ of Ni and Cr coating layers with the uniformity of ${\pm}10%$ can be obtained with the used of as-developed plating bath.

  • PDF

Evaluation of Brinell Hardness of Coated Surface by Finite Element Analysis: Part 2 - Influence of Substrate and Coating Thickness (유한요소해석에 의한 코팅면의 브리넬 경도 평가: 제2보 - 모재와 코팅두께의 영향)

  • Park, TaeJo;Kang, JeongGuk
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.144-150
    • /
    • 2021
  • The most cost-effective method of reducing abrasive wear in mechanical parts is increasing their hardness with thin hard coatings. In practice, the composite hardness of the coated substrate is more important than that of the substrate or coating. After full unloading of the load applied to an indenter, its indentation hardness evaluated based on the dent created on the test piece was almost dependent on plastic deformation of the substrate. Following the first part of this study, which proposes a new Brinell hardness test method for a coated surface, the remainder of the study is focused on practical application of the method. Indentation analyses of a rigid sphere and elastic-perfect plastic materials were performed using finite element analysis software. The maximum principal stress and plastic strain distributions as well as the dent shapes according to the substrate yield stress and coating thickness were compared. The substrate yield stress had a significant effect on the dent size, which in turn determines the Brinell hardness. In particular, plastic deformation of the substrate produced dents regardless of the state of the coating layer. The hardness increase by coating behaved differently depending on the substrate yield stress, coating thickness, and indentation load. These results are expected to be useful when evaluating the composite hardness values of various coated friction surfaces.

Fabrication and Characterization of Cu-based Amorphous Coatings by Cold Spray Process (저온 분사를 이용한 Cu계 비정질 코팅층의 제조 및 특성 연구)

  • Jung, Dong-jin;Park, Dong-Yong;Lee, Jin Kyu;Kim, Hyung Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.321-327
    • /
    • 2008
  • Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_6$) coating was produced by cold spraying as a new fabrication process. The microstructure and macroscopic properties of amorphous coating layer was investigated and compared with those of cold sprayed pure Cu coating. Amorphous powders were prepared by gas atomization and Al 6061 was used as the substrate plate. X-ray diffraction results showed that Cu based amorphous powder could be successfully deposited by cold spraying without any crystallization. The Cu based amorphous coating layer ($300{\sim}400{\mu}m$ thickness) contained 4.87% porosity. The hardness of Cu based amorphous coating represented $412.8H_v$, which was correspond to 68% of the hardness of injection casted bulk amorphous material. The wear resistance of Cu based amorphous coating was found to be three times higher than that of pure Cu coating. The 3-point bending test results showed that the adhesion strength of Cu based amorphous coating layer was higher than that pure Cu coating. It was also observed that hard Cu base amorphous particle could easily deform soft substrate by particle collisions and thus generated strong adhesion between coating and substrate. However, the amorphous coating layer unexpectedly represented lower corrosion resistance than pure Cu coating, which might be resulted from the higher content of porosity in the cold sprayed amorphous coating.

Improving Curing Rate and Physical Properties of Korean Dendropanax Lacquer with Thermal and Photo Initiator by Dual Curing (이중경화법을 이용한 열개시제 및 광개시제가 배합된 황칠도료의 경화속도 촉진 및 물성향상 연구)

  • Hwang, Hyeon-Deuk;Moon, Je-Ik;Park, Cho-Hee;Kim, Hyun-Joong;Hwang, Baik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.333-340
    • /
    • 2010
  • The Korean Dendropanax lacquer, made from a natural resinous sap from Dendropanax orbifera Lev., was used as a golden and transparent varnish for the traditional artifacts (armor uits, helmets, arrowheads, etc.) to make them be brilliant golden color. The cured film of the acquer has excellent protective properties such as weatherability, water resistance, and nticorrosive. But, one of disadvantages is that takes a long time and much energy to fulfill curing the lacquer. The chemical constituents of the lacquer contained conjugated diene compounds s the photopolymerizable monomers. These monomers easily polymerized in sunlight to form olden-colored, hard-coating films in a short time. Photooxidation may be one of the most mportant reactions in the chemistry of the lacquer. Although the Korean Dendropanax Lacquer hould be dried to a thoroughly dry stage to achieve optimal film properties, curing with elevated emperatures may be required for the protracted curing time at atmospheric temperature. So we ntended to accelerate the curing rate of the lacquer by dual curing of thermal and radiation uring. The effect of thermal initiator on the thermal curing reaction was evaluated by monitoring he changes in double bond peak with FT-IR. Then the curing rate of the lacquer blended with hermal initiator and photoinitiator together was measured during dual curing using a RPT with V spot curing machine. Thermal initiator not only accelerated the curing rate but also improved he physical property. And the curing rate of the Korean Dendropanax lacquer was improved by ual curing method of thermal and UV curing. According to these results, the application area of he Korean Dendropanax lacquer could be expanded to surface coatings for electronic devices uch as mobile phones or electronics.