• Title/Summary/Keyword: hard clustering

Search Result 116, Processing Time 0.032 seconds

Design of Hard Partition-based Non-Fuzzy Neural Networks

  • Park, Keon-Jun;Kwon, Jae-Hyun;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.30-33
    • /
    • 2012
  • This paper propose a new design of fuzzy neural networks based on hard partition to generate the rules of the networks. For this we use hard c-means (HCM) clustering algorithm. The premise part of the rules of the proposed networks is realized with the aid of the hard partition of input space generated by HCM clustering algorithm. The consequence part of the rule is represented by polynomial functions. And the coefficients of the polynomial functions are learned by BP algorithm. The number of the hard partition of input space equals the number of clusters and the individual partitioned spaces indicate the rules of the networks. Due to these characteristics, we may alleviate the problem of the curse of dimensionality. The proposed networks are evaluated with the use of numerical experimentation.

A Study on the Gen Expression Data Analysis Using Fuzzy Clustering

  • Choi, Hang-Suk;Cha, Kyung-Joon;Park, Hong-Goo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.25-29
    • /
    • 2005
  • Microarry 기술의 발전은 유전자의 기능과 상호 관련성 그리고 특성을 파악 가능하게 하였으며, 이를 위한 다양한 분석 기법들이 소개되고 있다. 본 연구에서 소개하는 fuzzy clustering 기법은 genome 영역의 expression 분석에 가장 널리 사용되는 기법중 비지도학습(unsupervized) 분석 기법이다. Fuzzy clustering 기법을 효모(yeast) expression 데이터를 이용하여 분류하여 hard k-means와 비교 하였다.

  • PDF

Nonlinear Process Modeling Using Hard Partition-based Inference System (Hard 분산 분할 기반 추론 시스템을 이용한 비선형 공정 모델링)

  • Park, Keon-Jun;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.4
    • /
    • pp.151-158
    • /
    • 2014
  • In this paper, we introduce an inference system using hard scatter partition method and model the nonlinear process. To do this, we use the hard scatter partition method that partition the input space in the scatter form with the value of the membership degree of 0 or 1. The proposed method is implemented by C-Means clustering algorithm. and is used for the initial center values by means of binary split. by applying the LBG algorithm to compensate for shortcomings in the sensitive initial center value. Hard-scatter-partitioned input space forms the rules in the rule-based system modeling. The premise parameters of the rules are determined by membership matrix by means of C-Means clustering algorithm. The consequence part of the rules is expressed in the form of polynomial functions and the coefficient parameters of each rule are determined by the standard least-squares method. The data widely used in nonlinear process is used to model the nonlinear process and evaluate the characteristics of nonlinear process.

A Study of I/O Performance Improvement in SATA Hard Disks (SATA 하드디스크의 I/O 성능 개선에 관한 연구)

  • Arfan, Abdul;Kim, Young-Jin;Kwon, JinBaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.123-125
    • /
    • 2011
  • A SATA hard disk has been widely used in recent years and NCQ is one of its crucial features. Despite the development from IDE to SATA disk, there is still much room for improvement for a SATA disk. In addition, until now a hard disk is a black box to us and it is very hard to make research at the level of a disk controller. To enhance the performance of NCQ, we try to do I/O clustering over the requests, which combines multiple sequential requests into a single large one. To evaluate the effect of an I/O clustering mechanism, we created a simple but practical SATA hard disk simulator. Experimental results show that the proposed approach is effective in enhancing the I/O performance of a SATA disk.

More Efficient k-Modes Clustering Algorithm

  • Kim, Dae-Won;Chae, Yi-Geun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.549-556
    • /
    • 2005
  • A hard-type centroids in the conventional clustering algorithm such as k-modes algorithm cannot keep the uncertainty inherently in data sets as long as possible before actual clustering(decision) are made. Therefore, we propose the k-populations algorithm to extend clustering ability and to heed the data characteristics. This k-population algorithm as found to give markedly better clustering results through various experiments.

  • PDF

Partially Evaluated Genetic Algorithm based on Fuzzy Clustering (퍼지 클러스터링 기반의 국소평가 유전자 알고리즘)

  • Yoo Si-Ho;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1246-1257
    • /
    • 2004
  • To find an optimal solution with genetic algorithm, it is desirable to maintain the population sire as large as possible. In some cases, however, the cost to evaluate each individual is relatively high and it is difficult to maintain large population. To solve this problem we propose a novel genetic algorithm based on fuzzy clustering, which considerably reduces evaluation number without any significant loss of its performance by evaluating only one representative for each cluster. The fitness values of other individuals are estimated from the representative fitness values indirectly. We have used fuzzy c-means algorithm and distributed the fitness using membership matrix, since it is hard to distribute precise fitness values by hard clustering method to individuals which belong to multiple groups. Nine benchmark functions have been investigated and the results are compared to six hard clustering algorithms with Euclidean distance and Pearson correlation coefficients as fitness distribution method.

THE FUZZY CLUSTERING ALGORITHM AND SELF-ORGANIZING NEURAL NETWORKS TO IDENTIFY POTENTIALLY FAILING BANKS

  • Lee, Gi-Dong
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.485-493
    • /
    • 2005
  • Using 1991 FDIC financial statement data, we develop fuzzy clusters of the data set. We also identify the distinctive characteristics of the fuzzy clustering algorithm and compare the closest hard-partitioning result of the fuzzy clustering algorithm with the outcomes of two self-organizing neural networks. When nine clusters are used, our analysis shows that the fuzzy clustering method distinctly groups failed and extreme performance banks from control (healthy) banks. The experimental results also show that the fuzzy clustering method and the self-organizing neural networks are promising tools in identifying potentially failing banks.

  • PDF

A Genetic Algorithm for Clustering Nodes in Wireless Ad-hoc Networks (무선 애드 혹 네트워크에서 노드 클러스터링을 위한 유전 알고리즘)

  • Jang, Kil-woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.649-651
    • /
    • 2017
  • A clustering problem is one of the organizational problems to improve the network lifetime and scalability in wireless ad-hoc networks. This problem is a difficult combinatorial optimization problem associated with the design and operation of these networks. In this paper, we propose an efficient clustering algorithm to maximize the network lifetime and consider scalability in wireless ad-hoc networks. The clustering problem is known to be NP-hard. We thus solve the problem by using optimization approaches that are able to efficiently obtain high quality solutions within a reasonable time for a large size network. The proposed algorithm selects clusterheads and configures clusters by considering both nodes' power and the clustering cost. We evaluate this performance through some experiments in terms of nodes' transmission energy. Simulation results indicate that the proposed algorithm performs much better than the existing algorithms.

  • PDF

Optimal Identification of IG-based Fuzzy Model by Means of Genetic Algorithms (유전자 알고리즘에 의한 IG기반 퍼지 모델의 최적 동정)

  • Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.9-11
    • /
    • 2005
  • We propose a optimal identification of information granulation(IG)-based fuzzy model to carry out the model identification of complex and nonlinear systems. To optimally identity we use genetic algorithm (GAs) sand Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the selected input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Genetically Optimized Information Granules-based FIS (유전자적 최적 정보 입자 기반 퍼지 추론 시스템)

  • Park, Keon-Jun;Oh, Sung-Kwun;Lee, Young-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.146-148
    • /
    • 2005
  • In this paper, we propose a genetically optimized identification of information granulation(IG)-based fuzzy model. To optimally design the IG-based fuzzy model we exploit a hybrid identification through genetic alrogithms(GAs) and Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the seleced input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the inital parameters are tuned effectively with the aid of the genetic algorithms and the least square method. And also, we exploite consecutive identification of fuzzy model in case of identification of structure and parameters. Numerical example is included to evaluate the performance of the proposed model.

  • PDF