

제 36 회 한국정보처리학회 추계학술발표대회 논문집 제 18 권 제 2 호 (2011. 11)

SATA 하드디스크의 I/O 성능 개선에 관한 연구

압둘 알판*, 김영진**, 권진백*
*선문대학교 컴퓨터공학과
**아주대학교 전자공학부

e-mail : abdul.arfan@gmail.com

A Study of I/O Performance Improvement in SATA

Hard Disks

Abdul Arfan*, Young-Jin Kim**, JinBaek Kwon*
*Dept. of Computer Science and Engineering, SunMoon University

**Div. of Electrical and Computer Engineering, Ajou University

요 약

A SATA hard disk has been widely used in recent years and NCQ is one of its crucial features. Despite the
development from IDE to SATA disk, there is still much room for improvement for a SATA disk. In addition, until
now a hard disk is a black box to us and it is very hard to make research at the level of a disk controller. To
enhance the performance of NCQ, we try to do I/O clustering over the requests, which combines multiple
sequential requests into a single large one. To evaluate the effect of an I/O clustering mechanism, we created a
simple but practical SATA hard disk simulator. Experimental results show that the proposed approach is effective
in enhancing the I/O performance of a SATA disk.

1. Introduction

Serial Advanced Technology Attachment (SATA) is a
recent technological advancement of the standard Integrated
Drive Electronics (IDE) hard drive interface [1]. SATA
employs a serial I/O communication bus instead of the
parallel I/O bus used in Parallel ATA (or IDE). Most industry
experts agree that SATA will replace parallel ATA technology
in the dominant desktop, workstation, and servers [2].

There have been some efforts to increase the performance
of the SATA disks. Recently, [3] seeks to increase the I/O
performance of SATA disks by observing the effect of native
command queuing (NCQ) and the disk scheduler in the
operating system when they work together because the NCQ
and a disk scheduler try to optimize disk I/Os without
realizing each other. This situation can result in a strange
behavior such as request starvation, which is a problem in
OS I/O prioritizing, making a negative effect in some
specific workloads.

I/O clustering is a mechanism that will merge the
sequential requests into a single long request. I/O clustering
is beneficial in enhancing the sequentiality of requests,
improving the I/O performance of a disk consequently.

In this paper we propose application of I/O clustering at
the level of a disk controller to increase the I/O performance
of a SATA disk. Inspired by [4]-[8] we devise a simple but
practical hard disk simulator so that we can evaluate our
proposed I/O clustering technique.

2. I/O clustering

In [4], we can see the usage of I/O clustering to boost the
overall performance as well as to enhance the energy

efficiency of a disk-based storage system. I/O clustering will
strengthen the sequential property of each request in a
request queue within a device driver.

Fig. 1 shows the result of our experiment of measuring the
sequentiality of a real disk I/O trace. We can see that even
when the sequentiality threshold is 8 logical block address
(lba), the percentage of total sequential requests due to I/O
clustering still reaches about 50%. This shows that I/O
clustering is useful in improving the sequentiality of requests.

Fig. 1. Percentage sequential requests of a real disk I/O trace.

3. Simulation Architecture

To evaluate our suggestion, we created a simple but
practical simulator of a SATA disk. The simulation should be
able to read a trace file and also serve the requests. First,
each request is inserted to a buffer in a host and if the queue
in the disk is not full then we can move the request to the
queue.

Fig. 2 shows the overview design of our simulator. The
simulator will read a trace file line by line and parse the line,

- 123 -

제 36 회 한국정보처리학회 추계학술발표대회 논문집 제 18 권 제 2 호 (2011. 11)

Fig.2. Overall structure of a SATA disk simulator.

reading the time, lba, size information of the request. Then,

it will put the request into a buffer. If there is room in the
queue, the request in the buffer will be sent to the cache. In
this paper, we turn the cache off to check the effect of I/O
clustering only.

Inside the queue, multiple sequential requests can be
merged into 1 request if its size is more than an I/O
clustering threshold. The merging will only occur if the total
size of requests is less than a threshold which is called an I/O
clustering threshold. This is to prevent the arbitrary requests
from being merged indefinitely. In our experiment, we set the
default threshold as 32 LBAs.

We have implemented 2 scheduling algorithms: FCFS
(first-come first-served) and NCQ. In FCFS, the request is
served based on the arrival time. FCFS is very simple and
has no chance for a starvation to occur. However, if we
introduce I/O clustering, there can be a chance for starvation
to occur. This is why we introduce a time out for FCFS.

4. Simulation Results

Fig.3. Service times with and without I/O clustering.

Fig.4. Access times with and without I/O clustering.

Fig. 3 and 4 show the result of I/O clustering. We can see

that there are some improvements in the total service time
and total access time. We used a trace in [4] and it has some
sequential requests. Thus, I/O clustering can enlarge those
sequential requests by merging them into a single request. In
comparison with FCFS, we notice that NCQ has superior I/O
performance irrespective of I/O clustering.

We achieved 8.8% improvement in the service time for
NCQ with I/O clustering over NCQ without I/O clustering.
For FCFS, we had 21% improvement over the case without
I/O clustering. These results come from that I/O clustering
has higher possibility to reduce the service time by merging
several requests into a larger sequential one. The effect of I/O
clustering is shown to be higher in FCFS compared to NCQ
because the NCQ has already created a better scheduling for
the requests than FCFS in the aspect of the sequentiality.

5. Conclusions

To improve the I/O performance of a SATA disk, we
implemented I/O clustering at the level of a disk controller
and evaluated it in a realistic SATA disk simulator. With a
real disk I/O trace, we found that NCQ with I/O clustering
have 8.8% improvement over NCQ without I/O clustering in
the aspect of the service time. As future work, we plan to
devise a proper cache algorithm for NCQ.

References

[1] Intel Corporation and Seagate Technology, “Serial ATA
Native Command Queuing: An Exiting New
Performance Feature for Serial ATA”, white paper, 2003.

[2] Alliance Systems “Technology Report: Serial ATA”
November 2003.

[3] Y.-J. Yu, D.-I. Shin, Hyeonsang Eom, and Heon Young
Yeom “NCQ vs. I/O Scheduler: Preventing Unexpected
Misbehaviors” ACM Transactions on Storage, Vol. 6,
No. 1, Article 2, Publication date: March 2010.

[4] Y.-J. Kim, S.-J. Lee, K. Zhang, and J. Kim “I/O
Performance Optimization Techniques for Hybrid Hard
Disk-Based Mobile Consumer Devices”, IEEE
Transactions on Consumer Electronics, vol. 53, issue 4,
pp. 1469-1476, Nov. 2007.

[5] D. M. Jacobson and J. Wilkes. “Disk scheduling
algorithms based on rotational position”, HP Technical
report, 1991.

[6] L. Huang and T. Chiueh. “Implementation of a Rotation
Latency Sensitive Disk Scheduler”, Technical Report
ECSL-TR81, SUNY, Stony Brook, March 2000.

Host Controller

Workload Manager

Disk Controller

Cache

Cache Algorithms

Queue

I/O Clustering

Scheduling Algorithm

Disk Mechanic

Seek Time Model

Rotation Time Model

Transfer Time Model

- 124 -

제 36 회 한국정보처리학회 추계학술발표대회 논문집 제 18 권 제 2 호 (2011. 11)

[7] J. Zedlewski, S. Sobti, N. Garg, A. Krishnamurthy, R.
Wang, “Modeling Hard-Disk Power Consumption”, in
Proc. of 2nd USENIX Conference on File and Storage
Techologies, March 2003.

[8] Lars Reuther, and Martin Pohlack “Rotational-Position-
Aware Real-Time Disk Scheduling Using a Dynamic
Active Subset (DAS)”, in Proc. of the 24th IEEE
International Real-Time Systems Symposium, Cancun,
Mexico, December 2003.

- 125 -

