• Title/Summary/Keyword: harbor resonance

Search Result 39, Processing Time 0.019 seconds

Comparison of the Net Inflow Rates of Seawater Exchange Breakwater of Different Shapes (해수교환방파제의 형상별 순유입유량 특성 비교)

  • Lee, Dal-Soo;Lee, Chang-Hoon;Oh, Young-Min;Chun, In-Sik;Kim, Chang-Il
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.393-397
    • /
    • 2003
  • The seawater exchange breakwaters can be effectively employed to conserve or enhance the water quality inside harbors by transmitting the exterior water into the harbor. In the present study, three shapes of the breakwater, that is, the flow conduit embedded type, the wave chamber type and the oscillating water channel type are compared far their water exchanging capability through regular wave experiments. The results show that the net influx of water appears differently depending on wave period for each breakwater type. The net influx of the wave chamber type is much greater than that of the flow conduit embedded type. It is also ascertained that the influx of the oscillating water channel type can be greatly enhanced by attaining the resonance condition inside the channel at the wave periods frequently occurring at the fields where the breakwaters are to be installed.

Resonant Characteristics in Rectangular Harbor with Narrow Entrance (2.Effects of Entrance Energy Loss) (개구부가 좁은 직사각형 항만의 공진 특성 (2.항입구 에너지 손실의 영향))

  • 정원무;박우선;서경덕;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.216-230
    • /
    • 1999
  • A Galerkin finite element model for the analysis of harbor oscillation has been developed based on the extended mild-slope equation. Infinite elements are used to accomodate the radiation condition at infinity and joint elements to treat the matching conditions at the harbor entrance which include the energy loss due to flow separation. The numerical tests for rectangular harbors with fully or partially open entrances show that the energy loss at the harbor entrance considerably reduces the the amplification ratios at the innermost parts of the harbors and that the amplification ratios decrease considerably with increasing incident wave heights and jet lengths at the harbor entrance. Application of the model to the Gamcheon harbor show that when the incident wave amplitude is small the amplification ratios rather increase when the entrance energy loss is included than when ignored because of the shift of the resonance periods. Even though the entrance energy loss was insignificant for the measured long-period incident waves, it would be of great importance if the incident waves were large as in the attack of tsunamis. The resonance period of the Helmholtz mode at the Gamcheon Harbor was calculated to be 31 minutes, which agrees well with the measured one between 27 and 33.3 minutes. The measured resonance periods between 9.4 and 12.1 minutes and 5.2 and 6.2 minutes were also calculated by the numerical model as 10.4 minutes and 6.6 or 5.6 minutes, indicating good performance of the model. On the other hand, it was shown that a variety of oscillation modes exists in the Gamcheon Harbor and lateral resonances of considerable amplification ratios also exist at the periods of 3.6 and 1.6 minutes as in the Young-II Bay.

  • PDF

Sensitivity Analysis on Hybrid Element Model for Harbor Oscillation (항만 공진에 대한 복합요소 수치모형의 민감도 분석)

  • 정원무;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.174-184
    • /
    • 1996
  • In the present study, for fully-open rectangular harbors, sensitivity analyses are made for the major parameters which are relevant to the practical application of a hybrid element model widely used fur the analysis of harbor oscillation. The results show that it is desirable to extend the finite element region to the area in which depth change is not large and that it is appropriate to take the depth of the outer region for analytic solution as the average along the boundary between the two regions. It is expected that the number of Fourier components of the analytic solution may not be important for a constant-depth simple-shaped harbor but its significance may increase for harbors of varying depth and complex geometry. It is found that the effect of incident wave direction is not significant for the first resonance mode but its effect becomes important as the bottom slope increases, especially for the higher resonance modes.

  • PDF

Characteristics of Harbor Resonance in Donghae Harbor (Part 1. Field Measurement) (동해항(東海港)의 부진동(副振動) 특성(特性)(1. 현장관측(現場觀測)))

  • Jeong, Weon Mu;Jung, Kyung Tae;Chae, Jang Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.173-183
    • /
    • 1993
  • Four wave gauges of pressure type were installed for about one month(1992. 2~3) for the analysis of wave agitations induced by the intrusion of long-period incident waves inside and outside of Donghae Harbor. Helmholtz natural period and second peak period of seiche in Donghae Harbor are found to be approximately 17.1 and 5.5 minutes from the spectral analysis of measured long-period wave data. Amplification ratio at Helmholtz natural period reaches about 10 which is five times as lagre as that of Youngil Bay, but wave amplitudes ill harbor were about 10 em during the measurement period which are relatively small.

  • PDF

Wave-Induced Motions of a Floating Body in a Harbour (파랑에 의한 항만 내 부유체의 운동)

  • Lee Ho-Young;Kwak Young-Ki;Park Jong-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.36-40
    • /
    • 2006
  • As large waves enter a harbor, during their propagation, the motions a floating body are large and if may even be damaged by waves. This phenomenon may be caused by harbor resonance, resulting from large motion at low wave frequency, which is close to the natural frequency of a vessel. In order to calculate the motion of a floating body in a harbor, it is necessary to use the wave forces containing the body-harbor interference. The simulation program to predict the motions of a floating body by waves in a harbor is developed, and this program is based on the method of velocity potential contiuation method proposed by Ijima and Yoshida The calculated results are shown by the variation of wave frequency, wave angle, and the position of a floating body.

Variation of Harbor Oscillations in Yeongil Bay

  • Jeon, Min-Su;Lee, Joong-Woo;Jeong, Jae-Hyun;Yang, Sang-Yong;Jeong, Young-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.53-58
    • /
    • 2006
  • Today, harbor oscillation problems are the most significant factor to consider when designing harbors serving very large ships. In coastal harbors, large vessels moored in the elastic hawsers are often displaced due to the resonance between long period waves and mooring systems. As a result, cargo handling may be interrupted and the hawsers may be broken, especially when the amplification becomes extreme. The most significant harbor confronted with harbor oscillation problem in Korea is Pohang New port. Many cases of problems are being reported by the pilot association and the local office of MOMAF (Ministry of Maritime Affairs and Fisheries). However, it is difficult to prevent the arrival of long waves causing oscillation within this harbor. Moreover, the Korean government has already started a new port plan at the mouth of Yeongil Bay without addressing the problems that have occurred in Pohang New port. This study deals with the variation of harbor oscillation due to the construction of a 4.1 km breakwater at the bay mouth including the arrangement of the new berths. Numerical methods used are in fairly standard form from the extended mile slope equation. The obtained numerical results were compared with field measurement from the previous and this will bring a certain level of discussion and consideration of variation to the future port development.

  • PDF

Resonant Characteristics in Rectangular Harbor with Narrow Entrance (1.Field Measurements and Data Analyses) (개구부가 좁은 직사각형 항만의 공진특성(1.현장관측과 자료 분석))

  • 정원무;박우선;서경덕;채장원;정신택
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.201-215
    • /
    • 1999
  • Field measurements were made for long- and short-period waves and current velocities at the harbor mouth using pressure-type wave gauges and a current meter, respectively, at the Gamcheon Harbor which has a rectangular shape with a narrow entrance. The measured pressure data were subjected to spectral analyses after removing tidal effects by applying trend removal and high-pass filtering. For the band averaging of the raw spectra, in order to obtain good resolution over the entire frequency, instead of a constant band width, variable band widths were used, which gradually increase as marching from the lowest frequency towards higher frequencies. The Helmholtz resonance mode at the Gamcheon Harbor shows the relative amplification ratio of 9.2 at the wave period of 31.7 minutes, which is quite large compared with those at the harbors located on the east coast of Korea. The second and the third resonance period was 10.3 and 5.4 minute, respectively. On the other hand, the analysis of every 24 hours data shows that during storms the spectral densities are very large compared to those during calm seas and also the second and third resonances are predominant.

  • PDF

Derivation of Correct Solutions for Harbor Oscillations by Depth Discontinuity along Offshore Boundary (외해 경계에서의 수심 불연속에 의한 항만 공진의 정해 유도)

  • 정원무;박우선;서경덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.254-261
    • /
    • 2001
  • It is well known that when long waves propagate from deep ocean onto a continental shelf with a very steep continental slope, the waves reflected from the shore can not propagate offshore and are re-reflected from the continental slope so that large water level fluctuations are induced near the shore. Liu(1986) has analyzed this phenomenon by assuming a topography which has a depth discontinuity along a semicircular offshore boundary, but his solution is erroneous. In the present paper, we correct his analytical solutions for a straight shoreline and a rectangular harbor. The corrected solution is then compared with the numerical results of the Galerkin finite element model of Jeong et al.(1998), which is based on the extended mild-slope equation.

  • PDF

Variation of Harbor Oscillations in Yeongil Bay (영일만 항만에서의 부진동 변화에 관한 연구)

  • Jeon Min-Su;Lee Joong-Woo;Jeong Jae-Hyun;Yang Sang-Yong;Jeong Young-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.30 no.6 s.112
    • /
    • pp.533-539
    • /
    • 2006
  • Today the harbor oscillation problems are the most significant factor to design harbors serving the very large ships. Large vessels moored in the elastic hawsers at the coastal harbors are often displaced due to the resonance between the long period waves and mooring system. The cargo handling may be interrupted and the hawsers may be broken, especially when the amplification becomes remarkable. The most significant harbor which is confronted with harbor oscillation problem in Korea is the Pohang New Port. Many cases of problems are being notified by the pilot association and local office of MOMAF. However, it is difficult to prevent the arrival of long waves musing oscillation within this harbor. Moreover, government already started new port plan at the mouth of Yeongil Bay without treating problems occurred in the Pohang New Port. This study deals with the variation of harbor oscillation due to the construction of 4.1km breakwater at the bay mouth and new port plan. Numerical method used are fairly standard form from the extended mild slope equation The obtained numerical results were compared with the field measurement from the previous study and this will bring a certain level of discussion and consideration of variation in the future port development.

Variation of Harbor Oscillations in Youngil Bay (영일만 항만에서의 부진동 변화에 관한 연구)

  • Jeon Min-Su;Lee Joong-Woo;Lee Seung-Chul;Jung Jae-Hyun;Hwang Ho-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.199-206
    • /
    • 2006
  • Today the harbor oscillation problems are the most significant factor to design harbors serving the very large ships. Large vessels moored in the elastic hawsers at the coastal harbors are often displaced due to the resonance between the long period waves and mooring system. The cargo handling may be interrupted and the hawsers may be broken, especially when the amplification becomes remarkable. The most significant harbor which is confronted with harbor oscillation problem in Korea is the Pohang New Port. Many cases of problems are being notified by the pilot association and local office of MOMAF. However, it is difficult to prevent the arrival of long waves causing oscillation within this harbor. Moreover, Government already started new port plan at the mouth of YoungIl Bay without treating problems occurred in the Pohang New Port. This study deals with the variation of harbor oscillation due to the construction of 4.1km breakwater at the bay mouth and new port plan. Numerical method used are fairly standard form from the extended mild slope equation. The obtained numerical results were compared with the field measurement from the previous study and this will bring a certain level of discussion and consideration of variation in the future port development.

  • PDF