• Title/Summary/Keyword: haptic joystick

Search Result 13, Processing Time 0.02 seconds

Internet-based Teleoperation of a Mobile Robot with Force-reflection (인터넷 환경에서 힘반영을 이용한 이동로봇의 원격제어)

  • 진태석;임재남;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.585-591
    • /
    • 2003
  • A virtual force is generated and fed back to the operator to make the teleoperation more reliable, which reflects the relationship between a slave robot and an uncertain remote environment as a form of an impedance. In general, for the teleoperation, the teleoperated mobile robot takes pictures of the remote environment and sends the visual information back to the operator over the Internet. Because of the limitations of communication bandwidth and narrow view-angles of camera, it is not possible to watch certain regions, for examples, the shadow and curved areas. To overcome this problem, a virtual force is generated according to both the distance between the obstacle and the robot and the approaching velocity of the obstacle w.r.t the collision vector based on the ultrasonic sensor data. This virtual force is transferred back to the master (two degrees of freedom joystick) over the Internet to enable a human operator to estimate the position of obstacle at the remote site. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. It is demonstrated by experiments that this collision vector based haptic reflection improves the performance of teleoperated mobile robot significantly.

A Study on the Development of Driving Simulator for Improvement of Unmanned Vehicle Remote Control (무인차량 원격주행제어 신뢰성 향상을 위한 통합 시뮬레이터 구축에 관한 연구)

  • Kang, Tae-Wan;Park, Ki-Hong;Kim, Joon-Won;Kim, Jae-Gwan;Park, Hyun-Chul;Kang, Chang-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.86-94
    • /
    • 2019
  • This paper describes the development of unmanned vehicle remote control system which is configured with steering and accelerating/braking hardware to improve the sense of reality and safety of control. Generally, in these case of the remote control system, a joystick-type device is used for steering and accelerating/braking control of unmanned vehicle in most cases. Other systems have been developing using simple steering wheel, but there is no function of that feedback the feeling of driving situation to users and it mostly doesn't include the accelerating/braking control hardware. The technology of feedback means that a reproducing the feeling of current driving situation through steering and accelerating/braking hardware when driving a vehicle in person. In addition to studying feedback technologies that reduce unfamiliarity in remote control of unmanned vehicles, it is necessary to develop the remote control system with hardware that can improve sense of reality. Therefore, in this study, the reliable remote control system is developed and required system specification is defined for applying force-feedback haptic control technology developed through previous research. The system consists of a steering-wheel module similar to a normal vehicle and an accelerating/braking pedal module with actuators to operate by feedback commands. In addition, the software environment configured by CAN communication to send feedback commands to each modules. To verify the reliability of the remote control system, the force-feedback haptic control algorithms developed through previous research were applied, to assess the behavior of the algorithms in each situation.

Obstacle avoidance of Mobile Robot with Virtual Impedance (가상임피던스를 이용한 원격 이동로봇의 장애물회피)

  • Jin, Tae-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.451-456
    • /
    • 2009
  • In this paper, a virtual force is generated and fed back to the operator to make the teleoperation more reliable, which reflects the relationship between a slave robot and an uncertain remote environment as a form of an impedance. In general, for the teleoperation, the teleoperated mobile robot takes pictures of the remote environment and sends the visual information back to the operator over the Internet. Because of the limitations of communication bandwidth and narrow view-angles of camera, it is not possible to watch certain regions, for examples, the shadow and curved areas. To overcome this problem, a virtual force is generated according to both the distance between the obstacle and the robot and the approaching velocity of the obstacle w.r.t the collision vector based on the ultrasonic sensor data. This virtual force is transferred back to the master (two degrees of freedom joystick) over the Internet to enable a human operator to estimate the position of obstacle at the remote site. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. It is demonstrated by experiments that this collision vector based haptic reflection improves the performance of teleoperated mobile robot significantly.