• 제목/요약/키워드: haptic joystick

검색결과 13건 처리시간 0.029초

힘 반향 조이스틱을 이용한 햅틱 인터페이스 (A Haptic Interface Using a Force-Feedback Joystick)

  • 고애경;김홍철;이장명;최준영
    • 제어로봇시스템학회논문지
    • /
    • 제13권12호
    • /
    • pp.1207-1212
    • /
    • 2007
  • We propose a haptic interface algorithm for joystick operators working in remote control systems of unmanned vehicles. The haptic interface algorithm is implemented using a force-feedback joystick, which is equipped with low price DC motors without encoders. Generating specific amounts of forces on the joystick pole according to the distance between a remote controlled vehicle and obstacles, the haptic interface enables the operator to perceive the distance information by the sense of touch. For the case of no joystick operation or no obstacles in the working area, we propose an origin control algorithm, which positions the joystick pole at the origin. The origin control algorithm prevents the false movement of the remote vehicles and provides the operator with a realistic force resisting the joystick pole's movement. The experiment results obtained under various scenarios exemplify the validity of the proposed haptic interface algorithm and the origin control algorithm.

힘 반향을 이용한 속도타원 가상환경 네비게이션 알고리즘 개발 (Development of a Velocity Ellipse Navigation Algorithm in Virtual Environments Using Force Feedback)

  • 윤인복;채영호
    • 한국CDE학회논문집
    • /
    • 제9권4호
    • /
    • pp.277-285
    • /
    • 2004
  • In this paper, a 2 DOF haptic yawing joystick for use as the navigation input device in virtual environments is introduced. The haptic yawing joystick has 360° range for yawing motion and ±100° for pitching motion. The device can support weights of up to 26N for χ axis and 10N for axis with 10kHz of sampling rate. The size of the haptic yawing joystick is so small that it can be assembled on armrest of an arm chair and has relatively larger work space than other conventional 2 DOF joysticks. For the haptic yawing joystick, an ellipse navigation algorithm using the user's velocity in the virtual navigation is proposed. The ellipse represents the velocity of the user. According to the velocity of the navigator, the ellipse size is supposed to be changed. Since the path width of navigation environments is limited, the ellipse size is also limited. The ellipse navigation algorithm is tested in 2 dimensional virtual environments. The test results show that the average velocity of the navigation with the algorithm is faster than the average navigation velocity without the algorithm.

진동모터로 구성된 햅틱 디바이스를 이용한 장애물 정보 전달 및 제어 방법 (Obstacle Information Transfer and Control Method using Haptic Device consist of Vibration Motors)

  • 이동혁;노경욱;강선균;한종호;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권10호
    • /
    • pp.1036-1043
    • /
    • 2014
  • In this paper, a new haptic device is proposed for the teleoperation, which can recognize the invisible environment of a mobile robot. With this new device, it is possible for the user to identify the location of an obstacle and to avoid it. The haptic device has been attached on the top of a joystick so that the user can remotely control the mobile robot to avoid the obstacles which are recognized by the ultrasonic sensors. Also, the invisible environment is recognized more accurately overlapping the data from the ultrasonic sensors. There are five vibration motors in the haptic device to indicate the direction of the obstacle. So the direction of the obstacle can be recognized by the vibration at the finger on each vibration motor. For various situations and surrounding environments, experiments are performed using fuzzy controller and overlapping ultrasonic sensors. The results demonstrate the effectiveness of the proposed haptic joystick.

진동패턴 알고리즘을 적용한 조이스틱의 햅틱 구현 (Haptic Joystick Implementation using Vibration Pattern Algorithm)

  • 노경욱;이동혁;한종호;박숙희;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제19권7호
    • /
    • pp.605-613
    • /
    • 2013
  • This research proposes a vibration pattern algorithm to implement the haptic joystick to control a mobile robot at the remote site without watching the navigation environment. When the user cannot watch the navigation environment of the mobile robot, the user may rely on the haptic joystick solely to avoid obstacles and to guide the mobile robot to the target. To generate vibration patterns, there is a vibration motor at the bottom of the joystick which is held by the user to control the motion direction of the mobile robot remotely. When the mobile robot approaches to an obstacle, a pattern of vibration is generated by the motor, and by feeling the vibration pattern which is determined by the relative position of the mobile robot to the obstacle, the user can move the joystick to avoid the collision to the obstacle for the mobile robot. To generate the vibration patterns to convey the relative location of the obstacle near the mobile robot to the user, Fuzzy interferences have been utilized. To measure the distance and location of the obstacle near the mobile robot, ultrasonic sensors with the ring structure have been adopted and they are attached at the front and back sides of the mobile robot. The precise location of the obstacle is obtained by fusing the multiple data from ultrasonic sensors. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.

Haptic Experimentation for Single Degree of Freedom Force Output Joystick using Hybrid Motor/Brake Actuator

  • Jinung An;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.171.1-171
    • /
    • 2001
  • This paper describes the design and implementation of a new type of a force reflective joystick. It has single degree of freedom that is actuated by motor and brake pair. The use of motor and brake allows various objects to be simulated without the stability problem and related safety issues involved with high torque motors only. The joystick performance is measured by its ability to simulate various test objects. Simple test objects are modeled as a benchmark test of the system´s performance and to evaluate different control approaches for hybrid motor/brake actuator. The force output joystick is capable of simulating forces in a variety of virtual environments. This device demonstrates the effectiveness of a hybrid motor/brake haptic actuator.

  • PDF

굴삭기를 이용한 해체 장비용 햅틱 장치 설계 (Design of A Haptic Device for Dismantling Process Using Excavator)

  • 김동남;오경원;홍대희;박종협
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1190-1194
    • /
    • 2007
  • Since the dismantling processes of building are very dangerous, there have been many studies to develop a remote operating devices using joystick. In this paper, in order to improve the operability of the dismantling actuator that is usually an excavator, a novel concept of tele-operated haptic device is proposed. Operators who use this haptic device with additional environmental sensing devices can work safely away from the dangerous sites. First, based on the concept design of the haptic device, the workspace mapping from the haptic device to the excavator is explored. Second, the kinematics which deals with the conversion from the 3 dimensional position information of the haptic device to the joint variable information of the backhoe is included. Lastly, 3D graphical simulation of both haptic device and the backhoe will be shown. This new design of the haptic device can be easily manufactured and gives the workers very convenient and transparent remote control capability.

  • PDF

병렬구조를 이용한 새로운 6 자유도 역감제시장치의 설계 및 해석 (Analysis and Design of a New 6-DOF Haptic Device Using a Parallel Mechanism)

  • 윤정원;류제하
    • 제어로봇시스템학회논문지
    • /
    • 제7권1호
    • /
    • pp.1178-1186
    • /
    • 2001
  • This paper presents design and analysis of a 6 degree-of-freedom new haptic device using a par-allel mechanism for interfacing with virtual reality. The mechanism is composed of three pantograph mecha-misms that, driven by ground-fixed servomotors. stand perpendicularly to the base plate. Three spherical joints connect the top of the pantograph with connecting bars, and three revolute joint connect connecting bars with a mobile joystick handle. Forward and inverse kinematic analyses have been performed and the Jacobian matrix is derived by using the screw theroy. Performance indices such as GPI(Global Payload Index), GCI(Global Conditioning index), Traslation and Orientation workspaces, and Sensitivity are evaluated to find optimal pa-rameters in the design stage. The proposed haptic mechanism has better load capability than those of the ex-isting haptic mechanisms due to the fact that motors are fixed at the base. It has also wider orientation work-space mainly due to RRR type spherical joints.

  • PDF

햅틱 디바이스를 이용한 촉감형 네비게이션 시스템 (Tactile Navigation System using a Haptic Device)

  • 이동혁;노경욱;강선균;김현우;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권8호
    • /
    • pp.807-814
    • /
    • 2014
  • In this paper, we proposed a haptic navigation system which used the tactile data for the user guides of the mobile robot to the reference point via tele-operation in unknown blind environment. This navigation system can enable a mobile robot to avoid obstacles and move to the reference point, according to the direction provided by the device guides through a haptic device consisting of a vibration motor in a blind environment. There are a great deal of obstacles in real environments, and so mobile robots can avoid obstacles by recognizing the exact position of each obstacle through the superposition of an ultrasonic sensor. The navigation system determines the direction of obstacle avoidance through an avoidance algorithm that uses virtual impedance, and lets users know the position of obstacles and the direction of the avoidance through the haptic device consisting of 5 vibration motors. By letting users know intuitionally, it lets the mobile robot precisely reach the reference point in unknown blind environment. This haptic device can implement a haptic navigation system through the tactile sensor data.

Internet-based Real-time Obstacle Avoidance of a Mobile Robot

  • Ko Jae-Pyung;Lee Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1290-1303
    • /
    • 2005
  • In this research, a remote control system has been developed and implemented, which combines autonomous obstacle avoidance in real-time with force-reflective tele-operation. A tele-operated mobile robot is controlled by a local two-degrees-of-freedom force-reflective joystick that a human operator holds while he is monitoring the screen. In the system, the force-reflective joystick transforms the relation between a mobile robot and the environment to the operator as a virtual force which is generated in the form of a new collision vector and reflected to the operator. This reflected force makes the tele-operation of a mobile robot safe from collision in an uncertain and obstacle-cluttered remote environment. A mobile robot controlled by a local operator usually takes pictures of remote environments and sends the images back to the operator over the Internet. Because of limitations of communication bandwidth and the narrow view-angles of the camera, the operator cannot observe shadow regions and curved spaces frequently. To overcome this problem, a new form of virtual force is generated along the collision vector according to both distance and approaching velocity between an obstacle and the mobile robot, which is obtained from ultrasonic sensors. This virtual force is transferred back to the two-degrees-of-freedom master joystick over the Internet to enable a human operator to feel the geometrical relation between the mobile robot and the obstacle. It is demonstrated by experiments that this haptic reflection improves the performance of a tele-operated mobile robot significantly.

무인차량 원격주행제어를 위한 힘반향 햅틱제어 기술에 관한 연구 (A Study on the Haptic Control Technology for Unmanned Military Vehicle Driving Control)

  • 강태완;박기홍;김준원;강석원;김재관
    • 한국산학기술학회논문지
    • /
    • 제19권12호
    • /
    • pp.910-917
    • /
    • 2018
  • 본 논문은 무인차량 원격 제어 시 실재감과 안전성을 향상시키기 위한 기술 개발 내용을 설명한 것이다. 일반적으로 무인차량 원격 운용 장치의 경우 조이스틱 형태의 장치나 간이 조향 휠로 구성하는 것이 대부분이다. 또한 차량 또는 장비를 직접 운전하는 감성을 구현하거나 현재 주행 상황을 운용 장치로 피드백하지 않기 때문에 사용자 입장에서는 이질감을 느낄수밖에 없었다. 최근 무인화 연구가 활발해짐에 따라, 이질감과 함께 현재의 주행 상황을 운전자에게 피드백하지 않아 발생하는 위험까지 제기되었고, 이러한 문제점을 제거하기 위한 힘반향 햅틱제어 기술의 필요성이 대두되었다. 따라서 본 연구에서는 기존의 무인차량 운용 장치가 가지고 있는 문제점을 해결하기 위하여 차량의 주행 상태를 고려한 힘반향 햅틱제어 기술을 제시하였다. 고려되어진 차량 주행 상태는 첫째로 차체 옆미끄럼각(${\beta}$)과 요레이트(${\gamma}$)와 같이 상태변수와 차량 동적 거동을 나타내는 파라미터를 포함하며, 위험 구역 접근, 장애물에 의한 조향 제한 등을 나타낼 수 있는 파라미터를 포함한다. 또한 햅틱제어 기술은 크게 일반 주행 상황, 위험 구역 접근 상황, 장애물에 의한 조향 제한 상황, 제어권 전환 상황 별 알고리즘으로 구성되며, 각 상황 별 천이 과정이 자연스럽도록 알고리즘을 구성하였다. 이러한 알고리즘을 검증하기 위하여 차량동역학 해석 시뮬레이션 툴을 활용, CAN 통신으로 구성된 시뮬레이터 환경을 구축하였으며, 각 상황 별 알고리즘 동작을 평가해봄으로써 실현 가능성 및 성능을 입증하였다.