• Title/Summary/Keyword: haptic interaction

Search Result 113, Processing Time 0.024 seconds

Haptic Data Transmission in Networked Haptic Collaboration (네트워크 햅틱 협업을 위한 햅틱 데이터 전송)

  • You, Yong-Hee;Sung, Mee-Young;Kim, Nam-Joong;Kang, Jin-Suk;Jun, Kyung-Koo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.64-69
    • /
    • 2007
  • 이 논문은 촉각 가상 환경(Haptic Virtual Environment)에서 촉각(haptic) 데이터를 촉각 데이터 특성에 맞추어 네트워크에 적응적이고 효율적으로 전송할 수 있는 전송 알고리즘을 제안한다. 촉감 상호작용 측정을 위해 네트워크 햅틱 협업 응용을 작성하였고 지연, 지터, 손실에 따른 변화를 분석하였다. 이를 바탕으로 네트워크 트래픽에 적응할 수 있는 알고리즘을 구성하였다. 손실되거나 지터의 영향을 받은 패킷에는 간단한 선형예측 방법을 사용하여 보상하여 손실과 지터로 인한 오차를 줄였다. 이는 심각한 손실이나 지터에 의해 떨림 현상이 나타나는 햅틱 장치의 문제점을 개선하게 되었다. 또한 네트워크 협업에서 지연이 발생할 때 나타나는 클라이언트들 사이의 비동시성을 해결하기 위하여 완충시간을 두었다. 지연이 큰 클라이언트는 버퍼를 사용하지 않고 실시간으로 처리하고, 지연이 적은 클라이언트는 버퍼를 사용하여 전송받은 좌표를 완충시킨 후에 처리하는 방법을 사용하여 클라이언트들 사이의 햅틱 렌더링을 동기화 하였다. 제안된 알고리즘은 다양한 네트워크 상황에서의 협업에서 개선된 결과를 보였다. 이를 바탕으로 향후 선형예측 방법을 다양하게 적용시키고 서버와 클라이언트 사이의 동기화를 구현하는 알고리즘을 작성할 것이다. 본 논문은 다양한 네트워크 상황 에서 햅틱 데이터를 전송하고 처리하는 연구의 기초자료가 될 수 있을 것이다.

  • PDF

Real-Time Haptic Rendering of Slowly Deformable Bodies Based on Two Dimensional Visual Information for Telemanipulation (원격조작을 위한 2차원 영상정보에 기반한 저속 변형체의 실시간 햅틱 렌더링)

  • Kim, Jung-Sik;Kim, Young-Jin;Kim, Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.855-861
    • /
    • 2007
  • Haptic rendering is a process providing force feedback during interactions between a user and a virtual object. This paper presents a real-time haptic rendering technique for deformable objects based on visual information of intervention between a tool and a real object in a remote place. A user can feel the artificial reaction force through a haptic device in real-time when a slave system exerts manipulation tasks on a deformable object. The models of the deformable object and the manipulator are created from the captured image obtained with a CCD camera and the recognition of objects is achieved using image processing techniques. The force at a rate of 1 kHz for stable haptic interaction is deduced using extrapolation of forces at a low update rate. The rendering algorithm developed was tested and validated on a test platform consisting of a one-dimensional indentation device and an off-the shelf force feedback device. This software system can be used in a cellular manipulation system providing artificial force feedback to enhance a success rate of operations.

Stable Haptic Interaction with Reference Energy Following Scheme (에너지 추종방법을 이용한 안정적 햅틱 상호작용)

  • Ryu Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.277-283
    • /
    • 2006
  • A recently proposed method for stabilizing haptic interfaces and teleoperation systems was tested with a 'PHANToM' commercial haptic device. The 'Passivity Observer' (PO) and 'Passivity Control1er' (PC) stabilization method was applied to stabilize the system but also excited a high frequency mode in the device. To solve this problem, we propose a method to use a timevarying desired energy threshold instead of fixed zero energy threshold for the PO, and make the actual energy input follow the timevarying energy threshold. With the time-varying energy threshold, we make the PC control action smooth without sudden impulsive behavior by distributing the dissipation. The proposed new PO/PC approach is applied to PHANToM with high stiffness (K = 5000N/m), and stable and smooth contact is guaranteed. Resetting and active environment display problems also can be solved with the reference energy following idea.

A Survey of Haptic Control Technology (햅틱 제어 기술 동향)

  • Ryu, Je-Ha;Kim, Jae-Ha;Seo, Chang-Hoon;Lim, Yo-An;Kim, Jong-Phil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.283-295
    • /
    • 2009
  • Haptics technology allows one to interact with virtual environments, augmented environments, and real environments providing tactual sensory information. Science and technology of haptics can in general be classified into three groups: machine haptics, computer haptics, and human haptics. This paper surveys the state-of-the-art of haptic control technology for virtual environments and teleoperation (real environments) and then proposes possible future research directions in the following areas: haptic stability control, bilateral teleoperation control, and stability enhancement control.

Nanolithography Using Haptic Interface in a Nanoscale Virtual Surface (햅틱인터페이스를 이용한 나노스케일 가상표면에서의 나노리소그래피)

  • Kim Sung-Gaun
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.2
    • /
    • pp.64-69
    • /
    • 2006
  • Nanoscale task such as nanolithography and nanoindenting is a challenging work that is beyond the capabilities of human sensing and precision. Since surface forces and intermolecular forces dominate over gravitational and other more intuitive forces of the macro world at the nanoscale, a user is not familiar with these novel nanoforce effects. In order to overcome this scaling barrier, haptic interfaces that consist of visual and force feedback at the macro world have been used with an Atomic Force Microscope (AFM) as a manipulator at the nanoscale. In this paper, a nanoscale virtual coupling (NSVC) concept is introduced and the relationship between performance and impedance scaling factors of velocity (or position) and force are explicitly represented. Experiments have been performed for nanoindenting and nanolithography with different materials in the nanoscale virtual surface. The interaction forces (non contact and contact nanoforces) between the AFM tip and the nano sample are transmitted to the operator through the haptic interface.

Stereo-Vision-Based Human-Computer Interaction with Tactile Stimulation

  • Yong, Ho-Joong;Back, Jong-Won;Jang, Tae-Jeong
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.305-310
    • /
    • 2007
  • If a virtual object in a virtual environment represented by a stereo vision system could be touched by a user with some tactile feeling on his/her fingertip, the sense of reality would be heightened. To create a visual impression as if the user were directly pointing to a desired point on a virtual object with his/her own finger, we need to align virtual space coordinates and physical space coordinates. Also, if there is no tactile feeling when the user touches a virtual object, the virtual object would seem to be a ghost. Therefore, a haptic interface device is required to give some tactile sensation to the user. We have constructed such a human-computer interaction system in the form of a simple virtual reality game using a stereo vision system, a vibro-tactile device module, and two position/orientation sensors.

  • PDF

Effect of the sampling time of high-frequency ZOH and a physical damper on stable haptic interaction (고주파 영차홀드의 샘플링 주기와 물리적 댐퍼가 안정적인 햅틱 상호작용에 미치는 영향)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.649-654
    • /
    • 2019
  • Stable haptic interaction with virtual environments is essential not only for the safety of the user but also for improving the immersion of the user. If the coefficient of a virtual spring is increased, the system becomes unstable. Therefore, the coefficient of the virtual spring is limited. The haptic system with the high-frequency zero-order-hold (HF-ZOH) is proposed to enhance the stability margin of a virtual spring. In this paper, the relationship among the sampling period of HF-ZOH, the coefficient of the physical damper, and the maximum stable margin of the virtual spring is analyzed. The lager the coefficient of the physical damper is, the shorter the sampling period of the HF-ZOH is, the larger the stable region of the virtual spring becomes. If the ratio N is larger than 40, the stable region of the proposed method is about three times to eight times that of the previous method, according to the coefficient of the physical damper. Hence the method enables to improve the user's realism in virtual environments.

User Evaluation of Encountered Type Haptic System with Visual-Haptic Co-location (시각 - 촉각 일치된 마중형 햅틱 제시 시스템의 사용자 평가)

  • Cha, Baekdong;Bae, Yoosung;Choi, Wonil;Ryu, Jeha
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.13-20
    • /
    • 2019
  • For encountered haptic display systems among the virtual training systems for industrial safety, visual-haptic co-location is required for natural interaction between virtual and real objects. In this paper, we performed the user evaluation of the immersive VR haptic system which implement some level of visual-haptic co-location through a careful and accurate calibration method. The goal of the evaluation is to show that user performance (reaction time and distance accuracy) for both environments is not significantly different for certain tasks performed. The user evaluation results show statistically significant differences in reaction time but the absolute difference is less than 1 second. In the meantime, the distance accuracy shows no difference between the virtual and the actual environments. Therefore, it can be concluded that the developed haptic virtual training system can provide inexpensive industrial safety training in place of costly actual environment.

Dynamic Behavior Modelling of Augmented Objects with Haptic Interaction (햅틱 상호작용에 의한 증강 객체의 동적 움직임 모델링)

  • Lee, Seonho;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.15 no.1
    • /
    • pp.171-178
    • /
    • 2014
  • This paper presents dynamic modelling of a virtual object in augmented reality environments when external forces are applied to the object in real-time fashion. In order to simulate a natural behavior of the object we employ the theory of Newtonian physics to construct motion equation of the object according to the varying external forces applied to the AR object. In dynamic modelling process, the physical interaction is taken placed between the augmented object and the physical object such as a haptic input device and the external forces are transferred to the object. The intrinsic properties of the augmented object are either rigid or elastically deformable (non-rigid) model. In case of the rigid object, the dynamic motion of the object is simulated when the augmented object is collided with by the haptic stick by considering linear momentum or angular momentum. In the case of the non-rigid object, the physics-based simulation approach is adopted since the elastically deformable models respond in a natural way to the external or internal forces and constraints. Depending on the characteristics of force caused by a user through a haptic interface and model's intrinsic properties, the virtual elastic object in AR is deformed naturally. In the simulation, we exploit standard mass-spring damper differential equation so called Newton's second law of motion to model deformable objects. From the experiments, we can successfully visualize the behavior of a virtual objects in AR based on the theorem of physics when the haptic device interact with the rigid or non-rigid virtual object.

HaptiSole: Wearable Haptic System in Vibrotactile Guidance Shoes for Visually Impaired Wayfinding

  • Slim Kammoun;Rahma Bouaziz;Faisal Saeed;Sultan Noman Qasem;Tawfik Al-Hadhrami
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3064-3082
    • /
    • 2023
  • During the last decade, several Electronic Orientation Aids devices have been proposed to solve the autonomy problems of visually impaired people. When hearing is considered the primary sense for Visually Impaired people (VI) and it is generally loaded with the environment, the use of tactile sense can be considered a solution to transmit directional information. This paper presents a new wearable haptic system based on four motors implemented in shoes, while six directions can be played. This study aims to introduce an interface design and investigate an appropriate means of spatial information delivery through haptic sense. The first experiment of the proposed system was performed with 15 users in an indoor environment. The results showed that the users were able to recognize, with high accuracy, the directions displayed on their feet. The second experiment was conducted in an outdoor environment with five blindfolded users who were guided along 120 meters. The users, guided only by the haptic system, successfully reached their destinations. The potential of tactile-foot stimulation to help VI understand Electronic Orientation Aids (EOA) instructions was discussed, and future challenges were defined.