• 제목/요약/키워드: haptic control

검색결과 182건 처리시간 0.031초

촉각 제어 시스템을 위한 제어용 인터럽트 타이머의 구현 (Implementation of a Controllable Interrupt timer for Haptic Control System)

  • 김대현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.632-635
    • /
    • 2000
  • In this paper we propose a controllable interrupt timer for haptic control system. haptic control system whihc was divided ito two processes as virtual environment(VE) manager and haptic controller. The VE manager displays the 3D graphic scene at low update rates 25Hz and haptic controller controls the haptic display at high update rates 1000Hz. To archive the accurate update rate we have imple-mented a timer so called "AaccTimer" based on Windows multimedia functions, The proposed "Acc Timer" for haptic control system has been imple- mented in a personal computer with a 6-DOF haptic interface. Experimental results show that our system is robust with respect to tolerances in the control rates and also through the accurate control rate the operator can always feel a stable force.feel a stable force.

  • PDF

보이스 코일형 모터를 이용한 햅틱 장치의 설계 및 제어 (Design and Control of Haptic Device using Voice Coil Type Motor)

  • 성하경;범진환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권10호
    • /
    • pp.439-445
    • /
    • 2002
  • In this paper force feedback control system is investigated for improving the quality of the haptic feedback in virtual reality applications. We suggested the method of controlling the haptic device and modelling the virtual environment. Haptic device is composed of five bar link structure, voice coil motor, control board, and virtual environment modeling program. We applied voice coil motor in the actuating system for simple structure and easy control. Virtual environment modelling is constructed in PC, and the control signals of the actuators and the encoder data are transferred to the control system through USB. Experiment is performed to evaluate the characteristics of the haptic device.

LQG/LTR을 이용한 Haptic Interface의 강인제어 (Robust Control of a Haptic Interface Using LQG/LTR)

  • 이상철;박헌;이수성;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제8권9호
    • /
    • pp.757-763
    • /
    • 2002
  • A newly designed haptic interface enables an operator to control a remote robot precisely. It transmits position information to the remote robot and feeds back the interaction force from it. A control algorithm of haptic interface has been studied to improve the robustness and stability to uncertain dynamic environments with a proposed contact dynamic model that incorporates human hand dynamics. A simplified hybrid parallel robot dynamic model fur a 6 DOF haptic device was proposed to from a real time control system, which does not include nonlinear components. LQC/LTR scheme was adopted in this paper for the compensation of un-modeled dynamics. The recovery of the farce from the remote robot at the haptic interface was demonstrated through the experiments.

MR 브레이크를 이용한 햅틱 큐 가속페달 장치 설계 및 제어 (Design and Control of Haptic Cue Device for Accelerator Pedal Using MR Brake)

  • 노경욱;한영민;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.516-522
    • /
    • 2009
  • This paper proposes a new haptic cue vehicle accelerator pedal device using magnetorheological(MR) brake. As a first step, an MR fluid-based haptic cue device is devised to be capable of rotary motion of accelerator pedal. Under consideration of spatial limitation, design parameters are optimally determined to maximize control torque using finite element method. The proposed haptic cue device is then manufactured and integrated with accelerator pedal. Its field-dependant torque is experimentally evaluated. Vehicle system emulating gear shifting and engine speed is constructed in virtual environment and communicated with the haptic cue device. Haptic cue algorithm using the feed-forward control algorithm is formulated to achieve optimal gear shifting in driving. Control performances are experimentally evaluated via feed-forward control strategy and presented in time domain.

MR 브레이크를 이용한 햅틱 큐 가속페달 장치 설계 및 제어 (Design and Control of Haptic Cue Device for Accelerator Pedal Using MR Brake)

  • 노경욱;한영민;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.627-632
    • /
    • 2009
  • This paper proposes a new haptic cue vehicle accelerator pedal device using magnetorheological (MR) brake. As a first step, an MR fluid-based haptic cue device is devised to be capable of rotary motion of accelerator pedal. Under consideration of spatial limitation, design parameters are optimally determined to maximize control torque using finite element method. The proposed haptic cue device is then manufactured and integrated with accelerator pedal. Its field-dependant torque is experimentally evaluated. Vehicle system emulating gear shifting and engine speed is constructed in virtual environment and communicated with the haptic cue device. Haptic cue algorithm using the feed-forward control algorithm is formulated to achieve optimal gear shifting in driving. Control performances are experimentally evaluated via feed-forward control strategy and presented in time domain.

  • PDF

촉각 정보를 이용한 이동로봇의 원격제어 (Remote Control of a Mobile Robot using Haptic Device)

  • 권용태;강희준;노영식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.737-741
    • /
    • 2004
  • A mobile robot system is developed which is remotely controlled by a haptic master called ‘PHANTOM’. The mobile robot has 4 ultrasonic sensors and single CCD camera which detects the distance from a mobile robot to obstacles in the environment and sends this information to a haptic master. For more convenient remote control, haptic rendering process is performed like viscosity forces and obstacle avoidance forces. In order to show the effectiveness of the developed system, we experiment that the mobile robot runs through the maze and the time is checked to complete the path of the maze with/without the haptic information. Through this repeated experiments, haptic information proves to be useful for remote control of a mobile robot.

  • PDF

강인적응 알고리즘을 통한 Haptic Interlace의 임피던스 제어 (A Robust Adaptive Impedance Control Algorithm for Haptic Interfaces)

  • 박헌;이상철;이수성;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.393-400
    • /
    • 2002
  • Teleoperation enables an operator to manipulate remote objects. One of the main goals in teleoperation researches is to provide the operator with the fueling of the telepresence, being present at the remote site. For these purposes, a master robot must be designed as a bilateral control system that can transmit position/force information to a slave robot and feedback the interaction force. A newly proposed impedance algorithm is applied for the control of a haptic interface that was developed as a master robot. With the movements of the haptic interface for position/force commands, impedance parameters are always varying. When the impedance parameters between an operator and the haptic interface and the dynamic model are known precisely, many model based control theories and methods can be used to control the device accurately. However, due to the parameters'variations and the uncertainty of the dynamic model, it is difficult to control haptic interfaces precisely. This paper presents a robust adaptive impedance control algorithm for haptic interfaces.

Direct Control of a Passive Haptic Device Based on Passive Force Manipulability Ellipsoid Analysis

  • Changhyun Cho;Kim, Munsang;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권2호
    • /
    • pp.238-246
    • /
    • 2004
  • In displaying a virtual wall using a passive haptic device equipped with passive actuators such as electric brakes, unsmooth motion frequently occurs. This undesirable behavior is attributed to time delay due to slowness in the virtual environment update and force approximation due to the inability of a brake to generate torque in arbitrary directions. In this paper a new control scheme called direct control is proposed to achieve smooth display on the wall-following task with a passive haptic device. In direct control, brakes are controlled so that the normal component of a resultant force at the end-effector vanishes, based on the force analysis at the end-effector of the passive haptic device using the passive FME (Force Manipulability Ellipsoid). Various experiments have been conducted to verify the validity of the direct control scheme with a 2-link passive haptic system.

힘 반향 조이스틱을 이용한 햅틱 인터페이스 (A Haptic Interface Using a Force-Feedback Joystick)

  • 고애경;김홍철;이장명;최준영
    • 제어로봇시스템학회논문지
    • /
    • 제13권12호
    • /
    • pp.1207-1212
    • /
    • 2007
  • We propose a haptic interface algorithm for joystick operators working in remote control systems of unmanned vehicles. The haptic interface algorithm is implemented using a force-feedback joystick, which is equipped with low price DC motors without encoders. Generating specific amounts of forces on the joystick pole according to the distance between a remote controlled vehicle and obstacles, the haptic interface enables the operator to perceive the distance information by the sense of touch. For the case of no joystick operation or no obstacles in the working area, we propose an origin control algorithm, which positions the joystick pole at the origin. The origin control algorithm prevents the false movement of the remote vehicles and provides the operator with a realistic force resisting the joystick pole's movement. The experiment results obtained under various scenarios exemplify the validity of the proposed haptic interface algorithm and the origin control algorithm.

A Heuristic Rule for the Performance Improvement in Time Domain Passivity Control of Haptic Interfaces

  • Kim, Yoon-Sang;Blake Hannaford
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권3호
    • /
    • pp.212-216
    • /
    • 2002
  • A practical issue is studied to improve the performance of a new energy based method of achieving stable, high performance haptic interface control. The issue is related to resetting the amount of energy accumulated in the Passivity Observer for faster operation. A heuristic method is derived and experimentally tested for the resetting and it is shown to help the PC to operate sooner when the system gets active. Experimental results are presented for the “Excalibur” haptic device.