• Title/Summary/Keyword: hand strength

Search Result 1,509, Processing Time 0.025 seconds

A study on the fatigue bending strength of quasi-isotropic CFRP laminates subjected to impact damage (축격손상을 받은 의사등방성 탄소섬유강화 복합재의 굽힘피로강도)

  • Park, Soo-Chul;Park, Seol-Hyeon;Jung, Jong-An;Cha, Cheon-Seok;Yang, Yong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.688-695
    • /
    • 2017
  • Compared to metal, CFRP has excellent mechanical characteristics in terms of intensity, hardness, and heat resistance as well as its light weight that it is used widely in various fields. Therefore, this material has been used recently in the aerospace field. On the other hand, the material has shortcomings in terms of its extreme vulnerability to damage occurring internally from an external impact. This study examined the intensity up to its destruction from repeated use with the internal impact of a CFRP laminated plate that had also been exposed to external impact obtain design data for the external plate of aircraft used in the aerospace field. For the experimental method, regarding the quasi-isotopic type CFRP specimen and orthotropic CFRP specimen that are produced with a different layer structure, steel spheres with a diameter of 5 mm were collided to observe the resulting impact damage. Through a 3-point flexural fatigue experiment, the progress of internal layer separation and impact damage was observed. Measurements of the flexural fatigue strength after the flexural fatigue experiment until internal damage occurs and the surface impacted by the steel spheres revealed the quasi-isotopic layer structure to have a higher intensity for both cases.

Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy (Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화)

  • Na, Sang-Su;Kim, Yong-Ho;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.

Material Characteristic of POFA Concrete and Its Application to Corrosion Resistance Evaluation (POFA 콘크리트의 재료특성 및 부식 저항성 평가로의 적용)

  • Lee, Chang-Hong;Song, Ha-Won;Ann, Ki-Yong;Ismail, Mohamed Abdel
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.565-572
    • /
    • 2009
  • In this study, corrosion resistance of palm oil fuel ash (POFA) concrete as a blended concrete is evaluated by using electrochemical technique. The POFA is an industrial byproduct obtained from fuel ash after extracting palm oil from palm-tree. In order to obtain basic material characteristics of the POFA concrete, tests on compressive strength, slump, weight loss, bleeding and expansion ratio were carried out the early-aged POFA concrete. On the other hand, durability characteristics, both chloride penetration and carbonation depth test, were also conducted. Finally, corrosion resistance were evaluated by applying electro-chemical artificial crack healing technique, and the tests on the impressed voltage characteristic, galvanic current and linear polarization resistance. From the experimental results, it was found that long-term strength, bleeding, lower slump ratio, expansion ratio, chloride penetration, carbonation and corrosion resistance were improved by using the POFA due to activated pozzolanic reaction. It can be also mentioned that POFA concrete has a potential to be used as a cementitious binder for green-recycling resources.

Punching Shear Strength of Deck Slabs Made of Ultra High Performance Concrete (UHPC 바닥판 슬래브의 뚫림전단강도)

  • Joh, Chang Bin;Kim, Byung Suk;Hwang, Hoon Hee;Choi, Kyoung Kyu;Choi, Sok Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.221-231
    • /
    • 2011
  • Thinner and lighter structural members can be designed by utilizing the high stiffness and toughness, and high compressive strength of UHPC(ultra high performance concrete), which reaches up to 200MPa. The punching shear capacity of UHPC was investigated in this paper aiming for the application of UHPC to bridge decks. Six square slabs were fabricated and punching shear test was performed under fixed boundary condition. Different thicknesses of test slabs, which were 40mm and 70mm, were selected. The shape ratio of loading plates were ranged between 1.0~2.5. 40mm thickness slabs showed longer softening region after the peak load and, on the other hand, 70mm thickness slabs revealed a more brittle shear failure. Experimental results were analyzed using various existing punching shear predicting equations. Ductal$^{(R)}$ equation and JSCE equation better predicted for 40mm slabs, and Harajli et al. equation and ACI-Ductal$^{(R)}$ equation better suited for 70mm slabs. Nevertheless generally they didn't well predict the test results. A new punching shear equation which was derived based on the actual failure mechanism was proposed. The proposed equation appeared to better predict the punching shear strength of UHPC than other available equations.

A Study on the Thermal Treatment Conditions of Retort Pouched Fried Fish Meat Paste 1. Influence of Thermal Treatment Conditions on Quality (레토르트파우치 튀김어묵의 열처리조건에 관한 연구 1. 열처리조건이 품질에 미치는 영향)

  • HA Jin-Hwan;LEE Eung-Ho;KIM Jin-Soo;JI Seung-Gil;KOO Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.573-581
    • /
    • 1987
  • The fish meat paste products are rapidly growing in its production. However, the recent prohibition of AF-2 gives a lot of difficulties in the marketing of fish meat paste products manufactured ty the conventional procedures. The present study aims to obtain the optimal conditions for retaining tile quality of the fish meat paste products with long shelf-life on the market. The fried fish meat paste was sealed in the retort pouches and sterilized under the conditions which the Fo value designated to 6. The effects of the sterilization temperature and the diameter of the products on the quality factors such as jelly strength, water holding capacity, texture and in vitro protein digestibility were investigated. The jelly strength and hardness increased as the sterilization temperature increased. On the other hand, there were no differences found in water holding capacity and elasticity. Of the samples, product with diameter of 12mm showed the highest values of jelly strength, hardness, L values and in vitro protein digestibility which sterilized at $124^{\circ}C$. However. tile results of the organoleptic tests showed rather score in the products with diameter of 16 mm than 12 mm which were sterilized at $124^{\circ}C $. From the results described above, it was concluded that the fried fish meat paste products with 16 mm or less in a diameter which were sterilized at higher temperature could keep high quality.

  • PDF

Analysis of Fundamental Properties and Durability of Concrete Using Coal Gasification Slag as a Combined Aggregate (석탄가스화 용융슬래그를 혼합잔골재로 사용한 콘크리트의 기초적 특성 및 내구성 분석)

  • Choi, Il-Kyung;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.331-338
    • /
    • 2020
  • The aim of the research is to evaluate the possibility of using coal gasification slag (CGS) as a combined aggregate for concrete mixture. To achieve this goal, the fundamental properties and the durability of concrete were analyzed depending on various combining ratio of CGS into both fine aggregate with favorable gradation and relatively coarse particles. According to the results of the experiment, slump and slump flow were increased with content of CGS regardless of crushed fine aggregate with good and poor gradations while the air content was decreased. For the compressive strength of the concrete, in the case of using the crushed aggregate with good gradation, increasing CGS content decreased compressive strength of the concrete, while when the concrete used crushed aggregate with poor gradation, the compressive strength was the maximum at 50% of CGS content. As a durability assessment, drying shrinkage was decreased and carbonation resistance was improved by increasing CGS content. On the other hand, for freeze-thawing resistance, CGS influenced adverse effect on freeze-thawing resistance. Therefore, it is known that an additional air entrainer is needed to increase the freeze-thawing resistance when CGS was used as a combined aggregate for concrete.

A STUDY ON THE VICKER'S HARDNESS AND DIAMETRAL TENSILE STRENGTH OF HYBRID GLASS IONOMER (Hybrid Glass Ionomer cement의 비커스경도와 간접인장강도에 관한 연구)

  • Kwon, Kyun-Won;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.505-518
    • /
    • 1997
  • The objective of this investigation was to compare the effects of water storage on the aspect of hardness and diametral tensile strengths of four hybrid glass ionomer cements(two compomers and two resin-reinforced glass ionomers) with a resin composite material. One composite resin(Degufill Ultra), two compomers(Dyract, Compoglass Cavifil), and two resin-reinforced glass ionomers(Fuji Duet, Vitremer) were used in this study. Cylindrical specimens were prepared and stored at $36{\pm}1^{\circ}C$ in distilled water for 10 minutes after set, and then tested on an Instron testing machine(No.4467) at 1.0 mm/min displacement rate. Vicker's hardness and diametral tensile strengths as time elapsed were measured after aging in water for 10 minutes, 1 hour, 3 hours, 1 day, 3 days, 5 days and 7 days at $36{\pm}1^{\circ}C$. During the test of diametral tensile strength, stress-strain curves were obtained, from which the compressive modulus were calculated and compared. The structure of four set glass ionomer cement mass was observed on SEM(Hitachi, S-2300) after being etched with 9.6% hydrofluoric acid for 1 minute. The results were as follows; 1. The hardness of the experimental group(compomer and the resin reinforced glass ionomer cement) did not exceed the value of control group(Degufill Ultra). 2. Vicker's hardness of the Fuji Duet tended to increase succeedingly, Dyract was decreased after 3 hours in water, and Vitremer was the lowest. 3. The control group(Degufill Ultra) presented progressively on increased diametral tensile strength with time, Fuji Duet were decreased after 3 days, Compoglass Cavifil and Vitremer were decreased after 5 days in water storage. 4. Compressive modulus of the control group(Degufill Ultra) and Dyract were increased sharply timely, Fuji Duet and Vitremer were increased smoothly by lapse of time in water. Fuji Duet were stronger than Vitremer. On the other hand, Vitremer exhibited the lowest toughness. 5. The microstructure of compomer was similar with that of the composite resin(Degufill Ultra), and the fillers in resin-reinforced glass ionomer cements were noticed. It can be concluded that mechanical properties of hybrid glass ionomer cements is weaker than composite resin, and that the compomers or the resin-reinforced glass ionomers can not substitute the composite resins. A plenty of considerations should be done on the application of them to the area under the loading and high wear has a little adverse effect on the mechanical properties on the water storage for 7 days. The further research should be needed to confirm the advantage of the compomer.

  • PDF

A Comparative study on Dynamic & Static elastic modulus of cement mortar specimens (시멘트 모르타르 재료의 동탄성계수와 정탄성계수 비교 연구)

  • O, Seon-Hwan;Kim, Hyoung-Soo;Jang, Bo-An;Suh, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.127-138
    • /
    • 2000
  • This study was conducted to examine the differences between dynamic and static elastic constants by use of some laboratory tests of cement mortar specimens which have different water/cement mixing ratios. Specific gravity measurement, ultrasonic velocity estimating and uniaxial compression test were adopted to acquire the dynamic and static elastic constants. Digital data acquisition and processing enhanced the accuracy of estimating the velocities of specimens drastically, Also, the method using the gradient of propagation delay time in according to increment of specimen length more enhanced the accuracy than the method using the only one specimen length over total propagation time. The correlation between density and the P and S wave velocity of specimens shows reliable positive relation and the correlation between density and the strength of uniaxial compression has the similar relationship. The dynamic Young's modulus $(E_D)$ is alway greater than the static Young's modulus $(E_S)$ and there is increasing tendency of the ratio $(E_D/E_S)$ according to the increase of density or strength of the specimens. On the other hand, there is no typical relationship between dynamic Poisson's ratio $({\nu}_D)$ and static Poisson's ratio $({\nu}_S)$ and just the ratio of ${\nu}_D/{\nu}_S$ ranges front 69 to 122 %.

  • PDF

Influence of Specimen Geometries on the Compressive Strength of Lightweight Aggregate Concrete (경량골재 콘크리트의 압축강도에 대한 시험체 기하학적 특성의 영향)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.333-340
    • /
    • 2012
  • The current study prepared 9 laboratorial concrete mixes and 3 ready-mixed concrete batches to examine the size and shape effects in compression failure of lightweight aggregate concrete (LWC). The concrete mixes were classified into three groups: normal-weight, all-lightweight and sand-lightweight concrete groups. For each concrete mix, the aspect ratio of circular or square specimens was 1.0 and 2.0. The lateral dimension of specimens varied between 50 and 150 mm for each laboratorial concrete mix, whereas it ranged from 50 to 400 mm with an incremental variation of 50 mm for each ready-mixed concrete batch. Test observations revealed that the crack propagation and width of the localized failure zone developed in lightweight concrete specimens were considerably different than those of normal-weight concrete (NWC). In LWC specimens, the cracks mainly passed through the coarse aggregate particles and the crack distribution performance was very poor. As a result, a stronger size effect was developed in LWC than in NWC. Especially, this trend was more notable in specimens with aspect ratio of 2.0 than in specimens with that of 1.0. The prediction model derived by Kim et al. overestimated the size effect of LWC when lateral dimension of specimen is above 150 mm. On the other hand, the modification factors specified in ASTM and CEB-FIP provisions, which are used to compensate for the shape effect of specimen on compressive strength, were still conservative in LWC.

Effect of Partial Prestressing Ratio and Effective Prestress on the Flexural Behavior of Prestressed Lightweight Concrete Beams (프리스트레스트 경량 콘크리트 보의 휨 거동에 대한 부분 프리스트레싱비와 유효 프리스트레스의 영향)

  • Yang, Keun-Hyeok;Moon, Ju-Hyun;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • The present investigation evaluates the flexural behavior of pre-tensioned lightweight concrete beams under two-point symmetrical concentrated loads according to the variation of the partial prestressing ratio and the effective prestress of prestressing strands. The designed compressive strength of the lightweight concrete with a dry density of 1,770 $kg/m^3$ was 35 MPa. The deformed bar with a yield strength of 383 MPa and three-wire mono-strands with tensile strength of 2,040 MPa were used for longitudinal tensile reinforcement and prestressing steel reinforcement, respectively. According to the test results, the flexural capacity of pre-tensioned lightweight concrete beams increased with the increase of the partial prestressing ratio and was marginally influenced by the effective prestress of strands. With the same reinforcing index, the normalized flexural capacity of pre-tensioned lightweight concrete beams was similar to that of pre-tensioned normal-weight concrete beams tested by Harajli and Naaman and Bennett. On the other hand, the displacement ductility ratio of pre-tensioned lightweight concrete beams increased with the decrease of the partial prestressing ratio and with the increase of the effective prestress of strands. The load-displacement relationship of pre-tensioned lightweight concrete beam specimens can be suitably predicted by the developed non-linear two-dimensional analysis procedure. In addition, the flexural cracking moment and flexural capacity of pre-tensioned lightweight concrete beams can be conservatively evaluated using the elasticity theorem and the approach specified in ACI 318-08, respectively.