DOI QR코드

DOI QR Code

Effect of Partial Prestressing Ratio and Effective Prestress on the Flexural Behavior of Prestressed Lightweight Concrete Beams

프리스트레스트 경량 콘크리트 보의 휨 거동에 대한 부분 프리스트레싱비와 유효 프리스트레스의 영향

  • Received : 2010.07.20
  • Accepted : 2010.09.06
  • Published : 2011.02.28

Abstract

The present investigation evaluates the flexural behavior of pre-tensioned lightweight concrete beams under two-point symmetrical concentrated loads according to the variation of the partial prestressing ratio and the effective prestress of prestressing strands. The designed compressive strength of the lightweight concrete with a dry density of 1,770 $kg/m^3$ was 35 MPa. The deformed bar with a yield strength of 383 MPa and three-wire mono-strands with tensile strength of 2,040 MPa were used for longitudinal tensile reinforcement and prestressing steel reinforcement, respectively. According to the test results, the flexural capacity of pre-tensioned lightweight concrete beams increased with the increase of the partial prestressing ratio and was marginally influenced by the effective prestress of strands. With the same reinforcing index, the normalized flexural capacity of pre-tensioned lightweight concrete beams was similar to that of pre-tensioned normal-weight concrete beams tested by Harajli and Naaman and Bennett. On the other hand, the displacement ductility ratio of pre-tensioned lightweight concrete beams increased with the decrease of the partial prestressing ratio and with the increase of the effective prestress of strands. The load-displacement relationship of pre-tensioned lightweight concrete beam specimens can be suitably predicted by the developed non-linear two-dimensional analysis procedure. In addition, the flexural cracking moment and flexural capacity of pre-tensioned lightweight concrete beams can be conservatively evaluated using the elasticity theorem and the approach specified in ACI 318-08, respectively.

이 연구에서는 상부 2점 집중하중을 받는 프리텐션 경량 콘크리트 보의 휨 거동을 부분 프리스트레싱 비와 긴장재의 유효 프리스트레스에 따라 평가하였다. 절건비중 1,770 $kg/m^3$의 경량 콘크리트 설계강도는 35 MPa이었으며, 항복강도 383 MPa의 일반 이형철근과 인장강도 2,040 MPa의 3연선을 각각 주 인장철근과 프리스트레싱 긴장재로 사용하였다. 실험 결과, 프리텐션 경량 콘크리트 보의 휨 내력은 부분 프리스트레싱 비의 증가와 함께 증가하지만 긴장재의 유효 프리스트레스에는 거의 영향을 받지 않았다. 동일 휨 보강지수에서 프리텐션 경량 콘크리트 보의 무차원 휨 내력은 Harajli and Naaman 및 Bennet에 의해 실험된 프리텐션 보통중량 콘크리트 보와 비슷한 수준이었다. 한편 프리텐션 경량 콘크리트 보의 변위 연성비는 부분 프리스트레싱 비의 감소와 함께 그리고 유효 프리스트레스의 증가와 함께 증가하였다. 프리텐션 경량 콘크리트 보의 하중-변위 관계는 비선형 2차원 해석모델에 의해 적절하게 평가될 수 있었다. 또한 프리텐션 경량 콘크리트 보의 휨 균열 내력 및 최대 휨 내력은 각각 탄성이론 및 ACI 318-08의 등가응력블록과 긴장재의 응력평가 식을 이용하여 안전측에서 예측될 수 있었다.

Keywords

References

  1. 심재일, 양근혁, “굳지 않은 경량골재 콘크리트의 공기량, 유동성 및 블리딩 특성,” 콘크리트학회 논문집, 22권, 4호, 2010, pp. 559-566. https://doi.org/10.4334/JKCI.2010.22.4.559
  2. Kayali, O., “Fly Ash Lightweight Aggregates in High Performance Concrete,” Construction and Building Materials, Vol. 22, No. 12, 2008, pp. 2393-2399. https://doi.org/10.1016/j.conbuildmat.2007.09.001
  3. 日本建築學會, 建設工事標準示方書.同解說, JASS 5 鐵筋コンクリ一ト工事, 1997.
  4. Collins, M. P. and Mitchell, D., Prestressed Concrete Structures, Prentice-Hall, 1991, 766 pp.
  5. Warwaruk, J., Sozen, M. A., and Siess, C. P., “Investigation of Prestressed Concrete for Highway Bridges, Part III: Strength and Behavior in Flexure of Prestressed Concrete Beams,” Bulletin No. 464, Engineering Experiment Station, University of Illinois, 1962, 105 pp.
  6. Harajli, M. H. and Naaman, A. E., “Static and Fatigue Tests on Partially Prestressed Beams,” Journal of Structural Engineering, ASCE, Vol. 111, No. 7, 1985, pp. 1602-1617. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:7(1602)
  7. Bennett, E. W. and Veerasubramanian, N., “Behavior of Non-Rectangular Beams with Limited Prestress after Flexural Cracking,” ACI Journal, Vol. 69, No. 9, 1972, pp. 533-542.
  8. Harajli, M. H. and Naaman, A. E., “Evaluation of the Ultimate Steel Stress in Partially Prestressed Flexural Members,” PCI Journal, Vol. 30, No. 5, 1985, pp. 54-81. https://doi.org/10.15554/pcij.09011985.54.81
  9. Loov, R. E., “A General Equation for the Steel Stress for Bonded Prestressed Concrete Members,” PCI Journal, Vol. 33, No. 6, 1988, pp. 108-127.
  10. Skogman, B. C., Tadros, M. K., and Grasmick, R., “Flexural Strength of Prestressed Concrete Members,” PCI Journal, Vol. 33, No. 5, 1988, pp. 96-123.
  11. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08), American Concrete Institute, Farmington Hills, MI, 2008, 473 pp.
  12. The European Standard EN 1992-1-1: 2004. Eurocode 2: Design of Concrete Structures, British Standards Institution, UK, 2004, 225 pp.
  13. 양근혁, 문주현, 변항용, “프리스트레스트 콘크리트 보의 휨거동에 대한 비선형 해석,” 대한건축학회 학술발표대회 논문집, 29권, 1호, 2009, pp. 255-258.
  14. ASTM A 416, Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete, American Society for Testing and Materials, 1996, pp. 572-575.
  15. Alkhairi, F. M. and Naaman, A. E., “Analysis of Beams Prestressed with Unbonded Internal or External Tendons,” Journal of Structural Engineering, ASCE, Vol. 119, No. 9, 1993, pp. 2680-2700. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:9(2680)
  16. Park, R. and Paulay, T., Reinforced Concrete Structures, Wiley Interscience, 1975, 769 pp.
  17. Yang, K. H. and Kang, T. H.-K., “Equivalent Strain Distribution Factor for Unbonded Tendon Stress at Ultimate,” ACI Structural Journal, Accepted for Publication, 2010.
  18. MacGregor, J. G. and Wight, J., Reinforced Concrete: Mechanics and Design, Prentice-Hall, 2005, 1111 pp.
  19. Thorenfeldt, E., Tomaszewicz, A., and Jensen, J. J., “Mechanical Properties of High Strength Concrete and Application to Design,” Proceedings of the Symposium: Utilization of High-Strength Concrete, 1987, pp. 149-159.
  20. Slate, F. O., Nilson, A. H., and Martinez, S., “Mechanical Properties of High-Strength Lightweight Concrete,” ACI Journal, Vol. 83, No. 4, 1986, pp. 606-613.
  21. Wang, P. T., “Complete Stress-Strain Curve of Concrete and its Effect on Ductility of Reinforced Concrete Members,” PhD thesis, University of Illinois, 1977, 257 pp.
  22. Menegotto, M. and Pinto, P. E., “Method of Analysis for Cyclically Loaded Reinforced Concrete Plane Frames,” IABSE Preliminary Report for Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, 1973, pp. 15-22.

Cited by

  1. A Parametric Study of Deflection Analysis of the Prestressed Beams using Finite Element Analysis vol.28, pp.1, 2015, https://doi.org/10.7734/COSEIK.2015.28.1.39