In this paper, we evaluated prediction accuracy of Euler angle spectrograph classification method using a convolutional neural networks (CNN) for hand gesture recognition in augmented reality (AR) cognitive rehabilitation system based on Leap Motion Controller (LMC). Hand gesture recognition methods using a conventional support vector machine (SVM) show 91.3% accuracy in multiple motions. In this paper, five hand gestures ("Promise", "Bunny", "Close", "Victory", and "Thumb") are selected and measured 100 times for testing the utility of spectral classification techniques. Validation results for the five hand gestures were able to be correctly predicted 100% of the time, indicating superior recognition accuracy than those of conventional SVM methods. The hand motion recognition using CNN meant to be applied more useful to AR cognitive rehabilitation training systems based on LMC than sign language recognition using SVM.
In this paper, we describe methods that analyze a human gesture. A human interface(HI) system for analyzing gesture extracts the head and hand regions after taking image sequence of and operators continuous behavior using CCD cameras. As gestures are accomplished with operators head and hands motion, we extract the head and hand regions to analyze gestures and calculate geometrical information of extracted skin regions. The analysis of head motion is possible by obtaining the face direction. We assume that head is ellipsoid with 3D coordinates to locate the face features likes eyes, nose and mouth on its surface. If was know the center of feature points, the angle of the center in the ellipsoid is the direction of the face. The hand region obtained from preprocessing is able to include hands as well as arms. For extracting only the hand region from preprocessing, we should find the wrist line to divide the hand and arm regions. After distinguishing the hand region by the wrist line, we model the hand region as an ellipse for the analysis of hand data. Also, the finger part is represented as a long and narrow shape. We extract hand information such as size, position, and shape.
Objective: To compare head and hand movement patterns during squash forehand motions between experts and less-skilled squash players. Method: Four experts and four less-skilled squash players participated in this study. They performed squash forehand swings and a VICON motion analysis system was used to obtain displacement and velocity data of the head and right hand during the movement. Mann-Whitney U-tests were performed to compare head and hand range of motion and peak velocity, and cross-correlation was performed to analyze the head-hand coordination pattern between groups in three movement directions. Results: In terms of head and hand kinematic data, experts had greater head range of motion during down swings than less-skilled squash players. Experts seemed to reach peak hand velocity at impact by reaching peak head velocity followed by hand peak velocity within a given temporal sequence. In terms of head-hand coordination patterns, both groups revealed high positive correlations in the medial-lateral direction, indicating a dominant allocentric coordination pattern. However, experts had uncoupled coordination patterns in the vertical direction and less-skilled squash players had high positive correlations. These results indicate that the head-hand movement pattern likely an important factor squash forehand movement. Conclusion: Analysis of head and hand movement patterns could be a key variable in squash training to reach expert-level performance.
We have developed a general purpose motion controller using an FPGA(Field Programmable Gate Array). The multi-PID controllers and GUI are implemented as a system-on-chip for multi-axis motion control. Comparing with the commercial motion controller LM 629, since it has multi-independent PID controllers, we have several advantages such as space effectiveness, low cost and lower power consumption. In order to test the performance of the proposed controller, motion of the robot hand is controlled. The robot hand has three fingers with 2 joints each. Finger movements show that tracking was very effective. Another experiment of balancing an inverted pendulum on a cart has been conducted to show the generality of the proposed FPGA PID controller. The controller has well maintained the balance of the pendulum.
This paper proposes a robot control human interface using Markov model (HMM) based hand signal recognizer. The command receiving humanoid robot sends webcam images to a client computer. The client computer then extracts the intended commanding hum n's hand motion descriptors. Upon the feature acquisition, the hand signal recognizer carries out the recognition procedure. The recognition result is then sent back to the robot for responsive actions. The system performance is evaluated by measuring the recognition of '48 hand signal set' which is created randomly using fundamental hand motion set. For isolated motion recognition, '48 hand signal set' shows 97.07% recognition rate while the 'baseline hand signal set' shows 92.4%. This result validates the proposed hand signal recognizer is indeed highly discernable. For the '48 hand signal set' connected motions, it shows 97.37% recognition rate. The relevant experiments demonstrate that the proposed system is promising for real world human-robot interface application.
손동작 식별 룰을 통한 컴퓨터의 프레젠테이션 제어 시스템을 제안한다. 발표자의 손 동작 식별을 위해 (일반적인 웹캠을 사용하여) 이미지를 입력받아 하르 분류기를 이용하여 사용자의 얼굴영역을 추출한다. YCbCr 컬러모델을 이용하여 손 영역을 추출한 후에 사용자의 얼굴과 손의 무게중심을 이용하여 손의 현재 움직임 상태와 위치를 판별 하였다. 사용자의 손이 모션 감지 룰에 적용되어 프레젠테이션 제어 명령이 실행된다. 제안하는 시스템은 모션 식별 룰을 이용하여 부가적인 기기를 사용하지 않고 배경의 복잡도에 독립적인 프레젠테이션을 제어가 가능한 시스템이다. 실험은 어두운 실내 분위기인 조도범위(lx) 15-20-30에서 프레젠테이션 실험을 통해 안정적인 제어동작을 확인하였다.
A fuzzy rule-based hand-motion estimation algorithm is proposed for a 6 dimensional spatial tracker in which low cost accelerometers and gyros are employed. To be specific, beginning and stopping of hand motions needs to be accurately detected to initiate and terminate integration process to get position and pose of the hand from accelerometer and gyro signals, since errors due to noise and/or hand-shaking motions accumulated by integration processes. Fuzzy rules of yes or no of hand-motion-detection are here proposed for rules of accelerometer signals, and sum of derivatives of accelerometer and gyro signals. Several experimental results and shown to validate our proposed algorithms.
본 연구에서는 손동작(Hand Motion)과 수작업(Manual Task) 분석에 VR환경에서 사용되는 각도 측정 장갑(3-D Glove)을 이용하는 방법을 제안하였다. 본 연구에서 개발된 손동작(Hand Motion)과 수작업(Manual Task)의 분석 시스템은 18-sensor $Cyberglove^{TM}$정 시스템으로부터 측정된 angle data를 기초로 손동작이나 수작업에 대한 totalmuscle moment값과 total muscle excursion값을 구하고, digit와 joint의 moment값을 X,Y.Z방향별고 구하는 기능을 가지고 있다. 시스템의 구성은 : (1) $Cyberglove^{TM}$ System과 분석 시스템의 digital data 처리를 기반으로 하는 손동작의 측정 시스템 ; (2) $Cyberglove^{TM}$ System에서 얻어진 자료를 바탕으로 3차원 공간에서 손동작을 표현할 수 있는 Kinematic Hand Model ; (3) Hand Model과 $Cyberglove^{TM}$ Systme을 기반으로 3차원에서 손동작의 역학적 분석을 할 수 있는 3-D Hand Biomechanical Model ; 등으로 되어있다. 본 시스템은 Telerobotics, Medicine, Virtual Reality 등 다양한 분야에 응용이 가능하며, 수작업에 관련되는 Product Design, Manual Control Device, Computer I/O Device의 설계에도 도움이 될 것으로 기대된다.
본 논문에서는 손동작 인식을 위한 개선된 손동작 움직임 표현방법을 제안한다. 제안된 방법은 다양하고 통일된 손동작 움직임을 인식하기 위해서 수화(한글수화) 시 사용되는 손동작에 적용시킨 표현방법이다. 수화 특히, 한글수화(KSL)는 수화소(Cheremes)라는 요소들, 즉, 손의 이동 방향, 손가락모양, 손의 위치 등의 조합에 의해 단어 또는 문장이 완성되어 의미 있는 수화가 완성된다. 본 논문에서는 한글 수화에서 이용되는 수화소(Cheremes)를 5개의 수화소 즉, 손의 이동방향(HMO),손가락모양(FS), 손의 방향(H0), 손의 위치(HP) 및 사용하는 손의 수(HN)로 분류, 표현한다. 손의 이동방향(HMO)은 수화에서 단어 또는 문장을 표현하는데 사용되는 방향을 고려하여 17개의 방향성분으로 표현한다. 손가락 모양(FS)은 수화동작에서 사용되는 손가락의 모양에 따라 17개의 성분으로 표현할 수 있으며, 또한, 손의 바닥을 이용하는지 손등을 이용하는지에 따라 손의 방향(HO)이 2가지 특징으로 표현된다. 손의 현재 위치(HP)는 수화동작에서 손이 놓이는 위치를 의미하며, 머리영역에서 가슴영역까지 전체 8개의 영역으로 나뉘어 표현한다. 마지막으로 사용하는 손의수는 수화동작에서 손 하나만을 사용하는지 양쪽 모두를 사용하는 지를 나타내는 것으로, 2가지 특징으로 표현한다. 제안된 손동작 표현방법을 한글수화의 단어 및 문장 모두에 적용한 결과 모든 KSL이 제안된 표현방법으로 완벽하게 표현됨을 보였다.
본 논문에서는 립모션 디바이스를 이용하여 사용자의 손 움직임을 계산하고, 이로부터 저글링 동작뿐만 아니라 이것을 활용하여 팔 근육을 연습 및 분석할 수 있는 새로운 프레임워크를 제안한다. 제안하는 방법은 실시간으로 사용자의 손동작에 맞춰 가상환경에서 공의 움직임을 매핑 할 수 있고, 근육의 이완과 수축을 시각화하여 운동량을 분석할 수 있다. 제안하는 프레임워크는 크게 세 부분으로 구성된다 : 1) 립모션 디바이스를 이용하여 사용자의 손 위치를 추적한다. 2) 저글링을 하듯이, 사용자가 공을 던지는 행동 패턴을 이벤트로 정의한다. 3) 사용자의 손 위치를 기준으로 저글링 형태의 움직임을 공에 매핑하기 위한 포물선 기반 입자 기법을 제안한다. 결과적으로 본 논문의 프레임워크를 이용하면 실시간 저글링 게임을 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.