• Title/Summary/Keyword: hand gesture

Search Result 402, Processing Time 0.029 seconds

Web-based 3D Virtual Experience using Unity and Leap Motion (Unity와 Leap Motion을 이용한 웹 기반 3D 가상품평)

  • Jung, Ho-Kyun;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.2
    • /
    • pp.159-169
    • /
    • 2016
  • In order to realize the virtual prototyping (VP) of digital products, it is important to provide the people involved in product development with the appropriate visualization and interaction of the products, and the vivid simulation of user interface (UI) behaviors in an interactive 3D virtual environment. In this paper, we propose an approach to web-based 3D virtual experience using Unity and Leap Motion. We adopt Unity as an implementation platform which easily and rapidly implements the visualization of the products and the design and simulation of their UI behaviors, and allows remote users to get an easy access to the virtual environment. Additionally, we combine Leap Motion with Unity to embody natural and immersive interaction using the user's hand gesture. Based on the proposed approach, we have developed a testbed system for web-based 3D virtual experience and applied it for the design evaluation of various digital products. Button selection test was done to investigate the quality of the interaction using Leap Motion, and a preliminary user study was also performed to show the usefulness of the proposed approach.

A Study on Shamanistic Expression Method of Performances Using VR Technology: Body Ownership and Gaze

  • Kim, Tae-Eun
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.135-142
    • /
    • 2018
  • Virtual reality (VR) technology has been increasingly more frequently used day by day in industries, entertainment and performances due to the development of AR and MR technologies. Performance arts also actively utilize $360^{\circ}$ VR technology due to the free expression of stage settings and auditoriums. However, technologies for systems in which performers wear VR devices firsthand rather than being in the sandpoint of bystanders while audiences wear VR head mounted displays(HMDs) to see performance stages have been rarely studied yet. This study investigated the technical possibilities of possible methods of expression that will enable performers to appear on the stage wearing VR devices. Since VR can maximize the sense of immersion with its closed HMD structure unlike augmented reality (AR), VR was judged to be suitable for studies centered on the mental interactions in the inner side of humans. Among them, to implement shamanistic expression methods with the phantoms of the body and soul, a motion capture technology linked with VR display devices and real-time cameras was realized on the stage. In this process, the importance of body ownership experienced by the performers (participants), reactions when they lost it, and the mental phenomena of the desire to possess the subjects of gaze could be seen. In addition, high possibility of development of this technology hereafter could be expected because this technology includes the technical openness that enables the audience to appear on the stage firsthand to become performers.

Hand Gesture Recognition Method based on the MCSVM for Interaction with 3D Objects in Virtual Reality (가상현실 3D 오브젝트와 상호작용을 위한 MCSVM 기반 손 제스처 인식)

  • Kim, Yoon-Je;Koh, Tack-Kyun;Yoon, Min-Ho;Kim, Tae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.1088-1091
    • /
    • 2017
  • 최근 그래픽스 기반의 가상현실 기술의 발전과 관심이 증가하면서 3D 객체와의 자연스러운 상호작용을 위한 방법들 중 손 제스처 인식에 대한 연구가 활발히 진행되고 있다. 본 논문은 가상현실 3D 오브젝트와의 상호작용을 위한 MCSVM 기반의 손 제스처 인식을 제안한다. 먼저 다양한 손 제스처들을 립모션을 통해 입력 받아 전처리를 수행한 손 데이터를 전달한다. 그 후 이진 결정 트리로 1차 분류를 한 손 데이터를 리샘플링 한 뒤 체인코드를 생성하고 이에 대한 히스토그램으로 특징 데이터를 구성한다. 이를 기반으로 MCSVM 학습을 통해 2차 분류를 수행하여 제스처를 인식한다. 실험 결과 3D 오브젝트와 상호작용을 위한 16개의 명령 제스처에 대해 평균 99.2%의 인식률을 보였고 마우스 인터페이스와 비교한 정서적 평가 결과에서는 마우스 입력에 비하여 직관적이고 사용자 친화적인 상호작용이 가능하다는 점에서 게임, 학습 시뮬레이션, 설계, 의료분야 등 많은 가상현실 응용 분야에서의 입력 인터페이스로 활용 될 수 있고 가상현실에서 몰입도를 높이는데 도움이 됨을 알 수 있었다.

Sign2Gloss2Text-based Sign Language Translation with Enhanced Spatial-temporal Information Centered on Sign Language Movement Keypoints (수어 동작 키포인트 중심의 시공간적 정보를 강화한 Sign2Gloss2Text 기반의 수어 번역)

  • Kim, Minchae;Kim, Jungeun;Kim, Ha Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1535-1545
    • /
    • 2022
  • Sign language has completely different meaning depending on the direction of the hand or the change of facial expression even with the same gesture. In this respect, it is crucial to capture the spatial-temporal structure information of each movement. However, sign language translation studies based on Sign2Gloss2Text only convey comprehensive spatial-temporal information about the entire sign language movement. Consequently, detailed information (facial expression, gestures, and etc.) of each movement that is important for sign language translation is not emphasized. Accordingly, in this paper, we propose Spatial-temporal Keypoints Centered Sign2Gloss2Text Translation, named STKC-Sign2 Gloss2Text, to supplement the sequential and semantic information of keypoints which are the core of recognizing and translating sign language. STKC-Sign2Gloss2Text consists of two steps, Spatial Keypoints Embedding, which extracts 121 major keypoints from each image, and Temporal Keypoints Embedding, which emphasizes sequential information using Bi-GRU for extracted keypoints of sign language. The proposed model outperformed all Bilingual Evaluation Understudy(BLEU) scores in Development(DEV) and Testing(TEST) than Sign2Gloss2Text as the baseline, and in particular, it proved the effectiveness of the proposed methodology by achieving 23.19, an improvement of 1.87 based on TEST BLEU-4.

Fast Convergence GRU Model for Sign Language Recognition

  • Subramanian, Barathi;Olimov, Bekhzod;Kim, Jeonghong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1257-1265
    • /
    • 2022
  • Recognition of sign language is challenging due to the occlusion of hands, accuracy of hand gestures, and high computational costs. In recent years, deep learning techniques have made significant advances in this field. Although these methods are larger and more complex, they cannot manage long-term sequential data and lack the ability to capture useful information through efficient information processing with faster convergence. In order to overcome these challenges, we propose a word-level sign language recognition (SLR) system that combines a real-time human pose detection library with the minimized version of the gated recurrent unit (GRU) model. Each gate unit is optimized by discarding the depth-weighted reset gate in GRU cells and considering only current input. Furthermore, we use sigmoid rather than hyperbolic tangent activation in standard GRUs due to performance loss associated with the former in deeper networks. Experimental results demonstrate that our pose-based optimized GRU (Pose-OGRU) outperforms the standard GRU model in terms of prediction accuracy, convergency, and information processing capability.

Smart Wrist Band Considering Wrist Skin Curvature Variation for Real-Time Hand Gesture Recognition (실시간 손 제스처 인식을 위하여 손목 피부 표면의 높낮이 변화를 고려한 스마트 손목 밴드)

  • Yun Kang;Joono Cheong
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.18-28
    • /
    • 2023
  • This study introduces a smart wrist band system with pressure measurements using wrist skin curvature variation due to finger motion. It is easy to wear and take off without pre-adaptation or surgery to use. By analyzing the depth variation of wrist skin curvature during each finger motion, we elaborated the most suitable location of each Force Sensitive Resistor (FSR) to be attached in the wristband with anatomical consideration. A 3D depth camera was used to investigate distinctive wrist locations, responsible for the anatomically de-coupled thumb, index, and middle finger, where the variations of wrist skin curvature appear independently. Then sensors within the wristband were attached correspondingly to measure the pressure change of those points and eventually the finger motion. The smart wrist band was validated for its practicality through two demonstrative applications, i.e., one for a real-time control of prosthetic robot hands and the other for natural human-computer interfacing. And hopefully other futuristic human-related applications would be benefited from the proposed smart wrist band system.

Development of Multi Card Touch based Interactive Arcade Game System (멀티 카드 터치기반 인터랙티브 아케이드 게임 시스템 구현)

  • Lee, Dong-Hoon;Jo, Jae-Ik;Yun, Tae-Soo
    • Journal of Korea Entertainment Industry Association
    • /
    • v.5 no.2
    • /
    • pp.87-95
    • /
    • 2011
  • Recently, the issue has been tangible game environment due to the various interactive interface developments. In this paper, we propose the multi card touch based interactive arcade system by using marker recognition interface and multi-touch interaction interface. For our system, the card's location and orientation information is recognized through DI-based recognition algorithm. In addition, the user's hand gesture tracking informations are provided by the various interaction metaphors. The system provides the user with a higher engagement offers a new experience. Therefore, our system will be used in the tangible arcade game machine.

Digital Forensic Investigation on Social Media Platforms: A Survey on Emerging Machine Learning Approaches

  • Abdullahi Aminu Kazaure;Aman Jantan;Mohd Najwadi Yusoff
    • Journal of Information Science Theory and Practice
    • /
    • v.12 no.1
    • /
    • pp.39-59
    • /
    • 2024
  • An online social network is a platform that is continuously expanding, which enables groups of people to share their views and communicate with one another using the Internet. The social relations among members of the public are significantly improved because of this gesture. Despite these advantages and opportunities, criminals are continuing to broaden their attempts to exploit people by making use of techniques and approaches designed to undermine and exploit their victims for criminal activities. The field of digital forensics, on the other hand, has made significant progress in reducing the impact of this risk. Even though most of these digital forensic investigation techniques are carried out manually, most of these methods are not usually appropriate for use with online social networks due to their complexity, growth in data volumes, and technical issues that are present in these environments. In both civil and criminal cases, including sexual harassment, intellectual property theft, cyberstalking, online terrorism, and cyberbullying, forensic investigations on social media platforms have become more crucial. This study explores the use of machine learning techniques for addressing criminal incidents on social media platforms, particularly during forensic investigations. In addition, it outlines some of the difficulties encountered by forensic investigators while investigating crimes on social networking sites.

Inexpensive Visual Motion Data Glove for Human-Computer Interface Via Hand Gesture Recognition (손 동작 인식을 통한 인간 - 컴퓨터 인터페이스용 저가형 비주얼 모션 데이터 글러브)

  • Han, Young-Mo
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.341-346
    • /
    • 2009
  • The motion data glove is a representative human-computer interaction tool that inputs human hand gestures to computers by measuring their motions. The motion data glove is essential equipment used for new computer technologiesincluding home automation, virtual reality, biometrics, motion capture. For its popular usage, this paper attempts to develop an inexpensive visual.type motion data glove that can be used without any special equipment. The proposed approach has the special feature; it can be developed as a low-cost one becauseof not using high-cost motion-sensing fibers that were used in the conventional approaches. That makes its easy production and popular use possible. This approach adopts a visual method that is obtained by improving conventional optic motion capture technology, instead of mechanical method using motion-sensing fibers. Compared to conventional visual methods, the proposed method has the following advantages and originalities Firstly, conventional visual methods use many cameras and equipments to reconstruct 3D pose with eliminating occlusions But the proposed method adopts a mono vision approachthat makes simple and low cost equipments possible. Secondly, conventional mono vision methods have difficulty in reconstructing 3D pose of occluded parts in images because they have weak points about occlusions. But the proposed approach can reconstruct occluded parts in images by using originally designed thin-bar-shaped optic indicators. Thirdly, many cases of conventional methods use nonlinear numerical computation image analysis algorithm, so they have inconvenience about their initialization and computation times. But the proposed method improves these inconveniences by using a closed-form image analysis algorithm that is obtained from original formulation. Fourthly, many cases of conventional closed-form algorithms use approximations in their formulations processes, so they have disadvantages of low accuracy and confined applications due to singularities. But the proposed method improves these disadvantages by original formulation techniques where a closed-form algorithm is derived by using exponential-form twist coordinates, instead of using approximations or local parameterizations such as Euler angels.

Design and Implementation of a Sign Language Gesture Recognizer using Data Glove and Motion Tracking System (장갑 장치와 제스처 추적을 이용한 수화 제스처 인식기의 실계 및 구현)

  • Kim, Jung-Hyun;Roh, Yong-Wan;Kim, Dong-Gyu;Hong, Kwang-Seok
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.233-237
    • /
    • 2005
  • 수화의 인식 및 표현 기술에 대한 관련 연구는 수화 인식을 통한 건청인과의 의사 전달, 가상현실에서의 손동작 인식 등을 대상으로 여러 방면으로의 접근 및 연구 결과를 도출하고 있다. 그러나 이들 연구의 대부분 데스크탑 PC기반의 수신호(Hand signal) 제어 및 수화 - 손 동작 인식에 목적을 두었고 수화 신호의 획득을 위하여 영상장비를 이용하였으며 이를 바탕으로 단어 위주의 수화 인식 및 표현에 중점을 둔 수화 인식 시스템의 구현을 통해 비장애인과의 자유로운 의사소통을 추구하고 있다. 따라서 본 논문에서는 햅틱 장치로부터 사용자의 의미있는 수화 제스처를 획득하기 위한 접근 방식을 차세대 착용형 PC 플랫폼 기반의 유비쿼터스 환경으로 확대, 적용시켜 제스처 데이터 입력 모듈로부터 새로운 정보의 획득에 있어 한계성을 극복하고 사용자의 편의를 도모할 수 있는 효율적인 데이터 획득 방안을 제시한다. 또한 퍼지 알고리즘 및 RDBMS 모듈을 이용하여 언제, 어디에서나 사용자의 의미 있는 문장형 수화 제스처를 실시간으로 인식하고 표현하는 수화 제스처 인식기를 구현하였다. 본 논문에서는 수화 제스처 입력 모듈(5th Data Glove System과 $Fastrak{\circledR}$)과 차세대 착용형 PC 플랫폼(embedded I.MX21 board)간의 이격거리를 반경 10M의 타원 형태로 구성하고 규정된 위치로 수화 제스처 데이터 입력모듈을 이동시키면서 5인의 피실험자에 대하여 연속적으로 20회의 반복 실험을 수행하였으며 사용자의 동적 제스처 인식 실험결과 92.2% 평균 인식률을 도출하였다.

  • PDF