• Title/Summary/Keyword: halophyte community

Search Result 24, Processing Time 0.017 seconds

Vascular Plants in Coastal Wetland in Gyeongsangnam-do, Korea (경상남도 연안습지에 분포하는 관속식물상)

  • You, Ju-Han;Park, Kyung-Hun;Yoon, Young-Chul;Song, Bong-Geun
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.29-38
    • /
    • 2009
  • A coastal wetland is the important area of diverse biodiversity as a transitional zone between coast and land. The results of surveying the flora were recorded as 310 taxa; 85 families, 212 genera, 278 species, 27 varieties and 5 forma. The halophytes were 14 taxa; Atriplex gmelini, Salsola komarovii, Suaeda asparagoides and so forth. The hydrophytes and hygrophytes were 23 taxa; Boehmeria spicata, Persicaria hydropiper, Persicaria japonica and so forth. The naturalized plants were 40 taxa; Fagopyrum esculentum, Rumex crispus, Chenopodium ambrosioides and so forth. The specific plants for the floral region were 28 taxa; Pteris multifida, Cyrtomium fortunei, Dryopteris erythrosora and so forth. In future, the flora of coastal wetland will be analyzed in series, and community dynamics and species composition for the halophytes will be studied.

  • PDF

Spatial distribution of halophytes and environment factors in salt marshes along the eastern Yellow Sea

  • Chung, Jaesang;Kim, Jae Hyun;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.264-276
    • /
    • 2021
  • Background: Salt marshes provide a variety of ecosystem services; however, they are vulnerable to human activity, water level fluctuations, and climate change. Analyses of the relationships between plant communities and environmental conditions in salt marshes are expected to provide useful information for the prediction of changes during climate change. In this study, relationships between the current vegetation structure and environmental factors were evaluated in the tidal flat at the southern tip of Ganghwa, Korea, where salt marshes are well-developed. Results: The vegetation structure in Ganghwa salt marshes was divided into three groups by cluster analysis: group A, dominated by Phragmites communis; group B, dominated by Suaeda japonica; and group C, dominated by other taxa. As determined by PERMANOVA, the groups showed significant differences with respect to altitude, soil moisture, soil organic matter, salinity, sand, clay, and silt ratios. A canonical correspondence analysis based on the percent cover of each species in the quadrats showed that the proportion of sand increased as the altitude increased and S. japonica appeared in soil with a relatively high silt proportion, while P. communis was distributed in soil with low salinity. Conclusions: The distributions of three halophyte groups differed depending on the altitude, soil moisture, salinity, and soil organic matter, sand, silt, and clay contents. Pioneer species, such as S. japonica, appeared in soil with a relatively high silt content. The P. communis community survived under a wider range of soil textures than previously reported in the literature; the species was distributed in soils with relatively low salinity, with a range expansion toward the sea in areas with freshwater influx. The observed spatial distribution patterns may provide a basis for conservation under declining salt marshes.

Changes in the Biofloc Bacterial Community Caused by Planting of Triglochin maritimum (지채(Triglochin maritimum)입식에 따른 바이오플락 사육수 내 세균 군집의 변화)

  • Jea-Hwang Cho;Su-Kyoung Kim;Hyeon-Ho Lim;Dea-Hee Kim;Hyon-Sob Han
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.1
    • /
    • pp.99-108
    • /
    • 2023
  • In this study, changes in biofloc-related and pathogenic bacteria in both low and high concentration biofloc breeding water planted with the halophyte (Triglochin maritimum were investigated). In the low-concentration biofloc breeding water, the ratio of bacteria related to the nitrogen cycle was initially 59.57% and, it decreased to 26.57% at the end of the experiment while other bacteria (excluding nitrogen-cycling bacteria and vibrios) increased from 38.75% to 73.43%. However, the planted experimental group maintained a relatively high ratio of nitrogen cycling bacteria at 58%. In the high-concentration experimental group, bacteria related to the initial nitrogen cycle, non-pathogenic vibrios, and pathogenic vibrios were 11.60, 36.28, and 20.14%, respectively. Finally, nitrogen-cycling bacteria were 36.47% in the control group and 37.55% in the planted group. The total number of vibrios decreased by 46.54% in the planted group and 48.01% in the control group, indicating a significant decrease in both experimental groups. However, the residual rate of pathogenic vibrios was 4.48% in the control group and 0.54% in the planted group. Overall, the planted group showed decreasing harmful bacteria and increasing useful bacteria.

The 2009-based detailed distribution pattern and area of Phragmites communis-dominant and Suaeda japonica-dominant communities on the Suncheon-bay and Beolgyo estuarine wetlands (순천만과 벌교 하구 연안습지의 2009년 기준 갈대 및 칠면초 우세 군집 분포양상과 면적 제시)

  • Hong, Seok Hwi;Chun, Seung Soo;Eom, Jin Ah
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.26-37
    • /
    • 2015
  • Halophyte distribution pattern and area in the Suncheon-bay and Beolgyo estuary coastal wetlands were analyzed using KOMPSAT-2 landsat images were taken in 2008 and 2009, and field investigations were fulfilled for confirming the precise boundaries of individual halophyte areas. The salt-marsh vegetation in those areas can be classified mainly into two dominant communities: Suaeda japonica-dominant and Phragmites communis-dominant communities. In order to identify sedimentary characteristics, tidal-flat surface leveling and sedimentary facies analysis had been conducted. The sedimentary facies of marsh area are mostly silty clayey and clay facies with a little seasonal change and its slope is very gentle (0.0007~0.002 in gradient). Phragmites communis and Suaeda japonica communities were distributed in the mud-flat zone between 0.7 m and 1.8 m higher than MSL (mean sea level): zone of 1.1~1.8 m in the former and zone of 0.7~1.3 m in the latter. In the Suncheon-bay estuarine wetland, on the basis of 2009 distribution, Phragmites communis-dominant and Suaeda japonica-dominant communities are about $0.79km^2$ and $0.22km^2$ in distribution area, respectively. On the other hand, Bulgyo estuarine marsh shows that the distribution areas of Phragmites communis-dominant and Suaeda japonica-dominant communities are about $0.31km^2$ and 0.031km2 in distribution area, respectively. Individual 105 and 60 dominant community areas and their distribution patterns can be well defined and indicated in the Suncheon-bay and Bulgyo estuarine marshes, respectively. The distribution pattern and area of hylophyte communities analyzed in this study based on 2008/2009 satellite images would be valuable as a base of future monitoring of salt-marsh related studies in the study area which is the most important salt-marsh research site in Korea.