• Title/Summary/Keyword: hall measurement

Search Result 492, Processing Time 0.028 seconds

A Study of the Properties of CuInS2 Thin Film by Sulfurization

  • Yang, Hyeon-Hun;Park, Gye-Choon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.73-76
    • /
    • 2010
  • The copper indium disulfide ($CuInS_2$) thin film was manufactured using sputtering and thermal evaporation methods, and the annealing with sulfurization process was used in the vacuum chamber to the substrate temperature on the glass substrate, the annealing temperature and the composition ratio, and the characteristics thereof were investigated. The $CuInS_2$ thin film was manufactured by the sulfurization of a soda lime glass (SLG) Cu/In/S stacked [1] elemental layer deposited on a glass substrate by vacuum chamber annealing [2] with sulfurization for various times at a temperature of substrate temperature of $200^{\circ}C$. The structure and electrical properties of the film was measured in order to determine the optimum conditions for the growth of $CuInS_2$ ternary compound semiconductor $CuInS_2$ thin films with a non-stoichiometric composition. The physical properties of the thin film were investigated under various fabrication conditions [3,4], including the substrate temperature, annealing temperature and annealing time by X-ray diffraction (XRD), field Emission scanning electron microscope (FE-SEM), and Hall measurement systems. [5] The sputtering rate depending upon the DC/RF power was controlled so that the composition ratio of Cu versus In might be around 1:1, and the substrate temperature affecting the quality of the film was varied in the range of room temperature (RT) to $300^{\circ}C$ at intervals of $100^{\circ}C$, and the annealing temperature of the thin film was varied RT to $550^{\circ}C$ in intervals of $100^{\circ}C$.

GeTe Thin Film의 상 변화가 저항과 Carrier Concentration에 미치는 영향

  • Lee, Gang-Jun;Na, Hui-Do;Kim, Jong-Gi;Jeong, Jin-Hwan;Choe, Du-Jin;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.292-292
    • /
    • 2011
  • TFT (Thin Film Transistor)에서 공정을 단순화 시키고, 가격을 하락시키기 위해서는 Poly-Si을 대체할 물질이 필요하다. 이 연구에서는 Chalcogenide Material의 하나인 GeTe 박막을 이용하여 TFT Channel으로 사용 가능한 물질인지 알아보기 위하여 Post-Annealing을 한 뒤, 상 변화에 따른 박막의 저항 변화, Carrier Concentration (cm-3)과 Mobility (cm2V-1s-1)의 변화를 알아보았다. Sputtering을 이용하여 증착한 GeTe 100 nm Thin Film 위에 Sputtering을 이용하여 SiO2 5 nm를 Capping Layer로 증착한 후, Post-Annealing을 200$^{\circ}C$, 300$^{\circ}C$, 400$^{\circ}C$, 500$^{\circ}C$로 온도를 변화 시키며 진행하였고, 이로 인하여 GeTe Thin Film에 외부의 영향을 최소화 하였다. 먼저 GeTe Thin Film의 Sheet Resistance를 측정한 결과는 300$^{\circ}C$ 까지 낮은 Sheet Resistance의 거동을 보이며 반면, 400$^{\circ}C$ 이상이 되면 높은 Sheet Resistance의 거동을 보인다. Hall Measurement를 통해, Carrier Concentration과 Mobility를 알아보았다. Carrier Concentration은 온도가 증가하면 1E+19에서 1E+21 까지 증가하며, Mobility는 감소하는 경향을 보인다. 500$^{\circ}C$ Post-Annealed GeTe Thin Film에서는 Resistivity가 상당히 높아 4 Point Probe (Range : 1 mohm/sq~2 Mohm/sq)로 측정이 불가능하다. XRD로 GeTe Thin Film을 분석한 결과 as-grown, 200$^{\circ}C$, 300$^{\circ}C$에서는 Cubic의 결정 구조를 보이며, Sheet Resistance가 급격히 증가한 400$^{\circ}C$, 500$^{\circ}C$에서는 Rhombohedral의 결정구조를 보인다. GeTe Thin Film은 400$^{\circ}C$ 이상의 Post-Annealing 온도에서 cubic 구조에서 Rhombohedral 구조로 상 변화가 일어난다. 위 결과를 통해, 결정 구조의 변화가 GeTe Thin Film의 저항, Carrier Concentration과 Mobility에 밀접한 영향이 미치는 것을 확인하였다.

  • PDF

Dependence of the Structural, Electrical, and Optical Properties of Al-doped ZnO Films for Transparent Conductors on the Process Atmosphere in Magnetron Sputtering (마그네트런 스퍼터링법으로 증착한 투명전극용 Al도핑된 ZnO의 공정 분위기에 따른 구조적, 전기적, 광학적 특성비교)

  • Yim, Keun-Bin;Lee, Chong-Mu
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.518-520
    • /
    • 2005
  • Effects of the $O_2/Ar$ flow ratio in the sputtering process on the crystallinity, surface roughness, carrier concentration, carrier mobility, and optical properties of Al-doped ZnO thin films deposited on sapphire (001) substrates by RF magnetron sputtering were investigated. XRD spectra showed a preferred orientation along the c-axis and a minimum FWHM of the (002) XRD intensity peak for the $O_2/Ar$ flow ratio of 0.5. The (101)peak also appeared and the degree of preferred orientation decreased as the $O_2/Ar$ flow ratio increased from 0.5 to 1.0. AFM analysis results showed that the surface roughness was lowest at the $O_2/Ar$ flow ratio of 0.5 and tended to increase owing to the increase of the grain size as the $O_2/Ar$ flow ratio increased further. According to the Hall measurement results the carrier concentration and carrier mobility of the fan decreased and thus the resistivity increased as the $O_2/Ar$ flow ratio increased. The transmittance of the ZnO:Al film deposited on the glass substrate was characteristic of a standing wave. The transmittance increased as the $O_2/Ar$ flow ratio in-RF magnetron sputtering increased up to 0.5. Considering the effects of the $O_2/Ar$ flow ratio on the surface roughness, electrical resistivity and transmittance properties of the ZnO:Al film the optimum $O_2/Ar$ flow ratio was 0.5 in the RF magnetron sputter deposition of the ZnO:Al film.

Electrical and Optical Properties of Solution-Based Sb-Doped SnO2 Transparent Conductive Oxides Using Low-Temperature Process (저온 공정을 이용한 용액 기반 Sb-doped SnO2 투명 전도막의 전기적 및 광학적 특성)

  • Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.145-151
    • /
    • 2014
  • Solution-based Sb-doped $SnO_2$ (ATO) transparent conductive oxides using a low-temperature process were fabricated by an electrospray technique followed by spin coating. We demonstrated their structural, chemical, morphological, electrical, and optical properties by means of X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, atomic force microscopy, Hall effect measurement system, and UV-Vis spectrophotometry. In order to investigate optimum electrical and optical properties at low-temperature annealing, we systemically coated two layer, four layer, and six layers of ATO sol-solution using spin-coating on the electrosprayed ATO thin films. The resistivity and optical transmittance of the ATO thin films decreased as the thickness of ATO sol-layer increased. Then, the ATO thin films with two sol-layers exhibited superb figure of merit compared to the other samples. The performance improvement in a low temperature process ($300^{\circ}C$) can be explained by the effect of enhanced carrier concentration due to the improved densification of the ATO thin films causing the optimum sol-layer coating. Therefore, the solution-based ATO thin films prepared at $300^{\circ}C$C exhibited the superb electrical (${\sim}7.25{\times}10^{-3}{\Omega}{\cdot}cm$) and optical transmittance (~83.1 %) performances.

Analysis of Propagation Characteristics according to the Change of Transmitter-Receiver Location in Indoor Environment (실내 환경에서 송수신기 위치 변화에 따른 전파 전달 특성 분석)

  • Lee, Seong-Hun;Cho, Byung-Lok;Lee, Hwa-Choon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.211-218
    • /
    • 2020
  • The radio wave propagation characteristics of the transmitter and receiver position change in the indoor environment were predicted through simulation, then the results obtained through the transmission loss measurement were compared and analyzed with the simulation results. The conference room was chosen as the environment for measuring transmission loss, and the radio transmission characteristics of the two environments were compared by selecting the exhibition hall without interior decorations and fixtures. In each indoor environment, the position of the transmitter chose two cases. One located in the center of the front wall and the other in the center of the side wall, and the position of the receiver moved along the centerline of the conference room and the side wall, measuring the receiving power. For each change in transmitter-receiver position, received power of 3GHz and 6GHz band were measured and compared with the simulation forecast results. The changes in received power at each receiving point were analyzed according to the location of the transmitter and the frequency band variation.

Fabrication and characterization of n-IZO / p-Si and p-ZnO:(In, N) / n-Si thin film hetero-junctions by dc magnetron sputtering

  • Dao, Anh Tuan;Phan, Thi Kieu Loan;Nguyen, Van Hieu;Le, Vu Tuan Hung
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.182-188
    • /
    • 2013
  • Using a ceramic target ZnO:In with In doping concentration of 2%, hetero-junctions of n-ZnO:In/p-Si and p-ZnO:(In, N)/n-Si were fabricated by depositing Indium doped n - type ZnO (ZnO:In or IZO) and Indium-nitrogen co-doped p - type ZnO (ZnO:(In, N)) films on wafers of p-Si (100) and n-Si (100) by DC magnetron sputtering, respectively. These films with the best electrical and optical properties were then obtained. The micro-structural, optical and electrical properties of the n-type and p-type semiconductor thinfilms were characterized by X-ray diffraction (XRD), RBS, UV-vis; four-point probe resistance and room-temperature Hall effect measurements, respectively. Typical rectifying behaviors of p-n junction were observed by the current-voltage (I-V) measurement. It shows fairly good rectifying behavior with the fact that the ideality factor and the saturation current of diode are n=11.5, Is=1.5108.10-7 (A) for n-ZnO:In/p-Si hetero-jucntion; n=10.14, Is=3.2689.10-5 (A) for p-ZnO:(In, N)/n-Si, respectively. These results demonstrated the formation of a diode between n-type thin film and p-Si, as well as between p-type thin film and n-Si..

The Properties of Atomic Layer Deposited Al-Doped ZnO Films Using H2O and O3 As Oxidants (H2O, O3 반응기체로 원자층 증착된 Al-doped ZnO 박막의 특성)

  • Kim, Min Yi;Cho, Young Joon;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.652-657
    • /
    • 2015
  • We have investigated the properties of Al-doped ZnO (AZO) thin films as functions of atomic layer deposition (ALD) oxidants. AZO transparent conducting oxides (TCOs) layer was deposited by ALD with adding trimethylaluminum (TMA) and diethylzinc (DEZn). AZO films were deposited at low temperature with $H_2O$ and $O_3$ as oxidants. Electrical, optical and structural properties of AZO thin films were investigated by 4-point probe, Hall effect measurement, UV-VIS, and AFM. Microstructure and atomic bonding states were investigated by HRXRD and XPS. The resistivity of AZO films grown using $H_2O$ was lower than the films grown using $H_2O$ and $O_3$, by approximately two orders of magnitude. The differences in oxygen vacancy peak intensity of AZO films were correlated to the optical and electrical properties.

Characteristics of amorphous indium tin oxide films on PET substrate grown by Roll-to-Roll sputtering system (저온 Roll-to-Roll 스퍼터 시스템을 이용하여 PET 기판위에 성막 시킨 ITO 박막의 전기적, 광학적, 구조적 특성)

  • Cho, Sung-Woo;Bae, Jung-Hyeok;Choi, Kwang-Hyuk;Moon, Jong-Min;Jeong, Jin-A;Jeong, Soon-Wook;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.380-381
    • /
    • 2007
  • This paper reports on the deposition conditions and properties of ITO films used as electrode layer in a organic light emitting diodes on a PET substrate. The deposition technique employed was specially designed roll-to-roll sputtering. The oxide was deposited at room temperature in an argon and oxygen plasma on a transparent conducting ITO layer on a PET film. The influence of deposition parameters such as DC power, working pressure and oxygen partial pressure has been investigated, in order to obtain the best compromise between a high deposition rate and adequate electro-optical properties. Electrical and optical properties of ITO films were analyzed by Hall measurement examinations with van der pauw geometry at room temperature and UV/Vis spectrometer analysis, respectively. In addition, the structural properties and surface smoothness were measured by x-ray diffraction and scaning electron microscopy, respectively. From optimized ITO films grown by roll-to-roll sputter system, good electrical$(6.44{\times}10^{-4}\;{\Omega}-cm)$ and optical(above 86 % at 550 nm) properties were obtained. Also, the ITO films exhibited amorphous structure and very flat surface beacause of low deposition temperature.

  • PDF

Effects of epilayer growth temperature on properties of undoped GaN epilayer on sapphire substrate by two-step MOCVD (2단계 MOCVD법에 의해 사파이어 기판 위 성장된 undoped GaN 에피박막의 특성에 미치는 고온성장 온도변화의 영향)

  • Chang K.;Kwon M. S.;Cho S. I.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.222-228
    • /
    • 2005
  • Undoped GaN epitaxial layer was grown on c-plane sapphire substrate by a two-step growth with metalorganic chemical vapor deposition(MOCVD). We have investigated the effects of the variation of final growth temperature on surface morphology, roughness, crystal quality, optical property, and electrical property In a horizontal MOCVD reactor, the film was grown at 300 Tow low-pressure with a fixed nucleation temperature of $500^{\circ}C$, varing the final growth temperature from $850\~1050^{\circ}C$ . The undoped GaN epilayers were characterized by atomic force microscopy, high-resolution x-ray diffractometer, photoluminescence, and Hall effect measurement.

Rapid Thermal Annealing 열처리 온도에 따른 유기태양전지용Nb:$TiO_2$/Ag/Nb:$TiO_2$ 다층 투명전극의 전기적, 광학적, 구조적 및 표면 특성 연구

  • Park, Ho-Gyun;Park, Yong-Seok;Jeong, Jin-A;Choe, Gwang-Hyeok;Na, Seok-In;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.197-197
    • /
    • 2010
  • 본 연구에서는 RF/DC dual 마그네트론 스퍼터 시스템을 이용하여 Glass 기판 상에 유기태양전지용 Nb-doped $TiO_2$ (NTO)/Ag/NTO 다층 투명전극을 성막하고 이 다층 투명전극을 $200^{\circ}C{\sim}700^{\circ}C$ 온도 범위에서 급속 열처리 (Rapid Thermal Annealing ; RTA)를 통하여 전기적, 광학적, 구조적 및 표면의 특성 변화를 연구하였다. Hall effect measurement, UV-Vis spectrometer, FESEM 분석을 통하여 다층투명전극의 전기적, 광학적, 표면분석을 하였고 Synchrotron 분석을 통하여 온도에 따른 구조변화를 분석하였다. 상온에서 성막된 다층투명전극은 30nm 두께의 NTO 박막 사이에 얇은 9nm의 얇은 Ag 층을 삽입한 구조로써 10ohm/square 이하의 매우 낮은 면저항과 ${\sim}10^{-5}\;ohm-cm$ 의 비저항, Anti-reflection 효과에 의해 85% 이상의 높은 광투과성을 나타내었다. RTA 온도가 증가함에 따라 전기적, 광학적 특성은 약간 향상되었고 비정질 구조를 유지함을 알 수 있었다. 그러나 높은 온도범위에서는 비정질 구조에서 Anatase 상으로 결정구조가 변화함을 알 수 있었고 전기적, 광학적 특성이 감소됨을 알 수 있었다. NTO/Ag/NTO 다층 투명전극을 유기태양전의 Anode로 적용하여 특성을 비교한 결과 RTA 온도가 증가함에 따라 유기태양전지의 효율 또한 증가하였고 최적화된 온도 조건에서 2.49% 의 높은 효율을 얻을 수 있었다. 이를 통해 우수한 특성을 나타내는 NTO/Ag/NTO 다층투명전극이 기존의 디스플레이 및 태양전지 등의 투명전극 재료로 주로 사용되어 온 ITO (Indium Tin Oxide) 를 대체 할 수 있는 재료로써의 가능성을 제시하였다.

  • PDF