• Title/Summary/Keyword: half-Heusler

Search Result 25, Processing Time 0.021 seconds

Thermoelectric Properties of Half-Heusler TiCoSb Synthesized by Mechanical Alloying Process

  • Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.542-545
    • /
    • 2011
  • Half-Heusler alloys are a potential thermoelectric material for use in high-temperature applications. In an attempt to produce half-Heusler thermoelectric materials with fine microstructures, TiCoSb was synthesized by the mechanical alloying of stoichiometric elemental powder compositions and then consolidated by vacuum hot pressing. The phase transformations during the mechanical alloying and hot consolidation process were investigated using XRD and SEM. A single-phase, half- Heusler allow was successfully produced by the mechanical alloying process, but a minor portion of the second phase of the CoSb formation was observed after the vacuum hot pressing. The thermoelectric properties as a function of the temperature were evaluated for the hot-pressed specimens. The Seebeck coefficients in the test range showed negative values, representing n-type conductivity, and the absolute value was found to be relatively low due to the existence of the second phase. It is shown that the electrical conductivity is relatively high and that the thermal conductivities are compatibly low in MA TiCoSb. The maximum ZT value was found to be relatively low in the test temperature range, possibly due to the lower Seebeck coefficient. The Hall mobility value appeared to be quite low, leading to the lower value of Seebeck coefficient. Thus, it is likely that the single phase produced by mechanical alloying process will show much higher ZT values after an excess Ti addition. It is also believed that further property enhancement can be obtained if appropriate dopants are selectively introduced into this MA TiCoSb System.

Thermoelectric Properties of Half-Heusler ZrNiSn1-xSbx Synthesized by Mechanical Alloying Process and Vacuum Hot Pressing

  • Ur, Soon-Chul
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.401-405
    • /
    • 2011
  • Half-heusler phase ZrNiSn is one of the potential thermoelectric materials for high temperature application. In an attempt to investigate the effect of Sb doping on thermoelectric properties, half-heusler phase $ZrNiSn_{1-x}Sb_x$ ($0{\leq}x{\leq}0.08$) was synthesized by mechanical alloying of stoichiometric elemental powder compositions, and consolidated by vacuum hot pressing. Phase transformations during mechanical alloying and hot consolidation were investigated using XRD. Sb doped ZrNiSn was successfully produced in all doping ranges by vacuum hot pressing using as-milled powders without subsequent annealing. Thermoelectric properties as functions of temperature and Sb contents were evaluated for the hot pressed specimens. Sb doping up to x=0.04 in $ZrNiSn_{1-x}Sb_x$ was shown to be effective on thermoelectric properties and the figure of merit (ZT) was shown to reach to the maximum at x=0.02 in this study.

Thermoelectric and Transport Properties of FeV1-xTixSb Half-Heusler System Synthesized by Controlled Mechanical Alloying Process

  • Hasan, Rahidul;Ur, Soon-Chul
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.725-732
    • /
    • 2018
  • The thermoelectric and transport properties of Ti-doped FeVSb half-Heusler alloys were studied in this study. $FeV_{1-x}Ti_xSb$ (0.1 < x < 0.5) half-Heusler alloys were synthesized by mechanical alloying process and subsequent vacuum hot pressing. After vacuum hot pressing, a near singe phase with a small fraction of second phase was obtained in this experiment. Investigation of microstructure revealed that both grain and particle sizes were decreased on doping which would influence on thermal conductivity. No foreign elements pick up from the vial was seen during milling process. Thermoelectric properties were investigated as a function of temperature and doping level. The absolute value of Seebeck coefficient showed transition from negative to positive with increasing doping concentrations ($x{\geq}0.3$). Electrical conductivity, Seebeck coefficient and power factor increased with the increasing amount of Ti contents. The lattice thermal conductivity decreased considerably, possibly due to the mass disorder and grain boundary scattering. All of these turned out to increase in power factor significantly. As a result, the thermoelectric figure of merit increased comprehensively with Ti doping for this experiment, resulting in maximum thermoelectric figure of merit for $FeV_{0.7}Ti_{0.3}Sb$ at 658 K.

Electronic Structure and Half-Metallicity in the Zr2RuZ (Z = Ga, In, Tl, Ge, Sn, and Pb) Heusler Alloys

  • Eftekhari, A.;Ahmadian, F.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1370-1376
    • /
    • 2018
  • The electronic structures, magnetic properties and half-metallicity in $Zr_2RuZ$ (Z = Ga, In, Tl, Ge, Sn, and Pb) alloys with $AlCu_2Mn-$ and $CuHg_2Ti$-type structures were investigated using first-principles density functional theory (DFT) calculations. The calculations showed that $Zr_2RuIn$, $Zr_2RuTl$, $Zr_2RuSn$, and $Zr_2RuPb$ compounds with $CuHg_2Ti$-type structures were half-metallic ferromagnets with half-metallic band gaps of 0.18, 0.24, 0.22, and 0.27 eV, respectively. The half-metallicity originated from d-d and covalent hybridizations between the transition metals Zr and Ru. The total magnetic moments of the $Zr_2RuZ$ (Z = In, Tl, Sn, and Pb) compounds with $CuHg_2Ti$-type structures were integer values of $1{\mu}B$ and $2{\mu}B$, which is in agreement with Slater-Pauling rule ($M_{tot}=Z_{tot}-18$). Among these compounds, $Zr_2RuIn$ and $Zr_2RuTl$ were half-metals over relatively wide regions of the lattice constants, indicating that these two new Heusler alloys are ideal candidates for use in spintronic devices.

Structural and Magnetic Properties of Co2MnSi Heusler Alloy Films

  • Lim, W.C.;Okamura S.;Tezuka N.;Inomata K.;Bae, J.Y.;Kim, H.J.;Kim, T.W.;Lee, T.D.
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.8-11
    • /
    • 2006
  • Recently half-metallic full-Heusler alloy films have attracted significant interests for spintronics devices. As these alloys have been known to have a high spin polarization, very large TMR ratio is expected in magnetic tunnel junctions. Among these alloys, $Co_2MnSi$ full-Heusler alloy with a high spin polarization and a high Curie temperature is considered a good candidate as an electrode material for spintronic devices. In this study, the magnetic and structural properties of $Co_2MnSi$ Heusler alloy films were investigated. TMR characteristics of magnetic tunnel junctions with a $Co_2MnSi/SiO_2/CoFe$ structure were studied. A maximum MR ratio of 39% with $SiO_2$ substrates and 27% with MgO(100) substrates were obtained. The lower MR ratio than expectation is considered due to off-stoichiometry and atomic disorder of $Co_2MnSi$ electrode together with oxidation of the electrode layer.

First-principles Study on the Half-metallicity and Magnetism of a Full Heusler Alloy, Co2HfSi, in Bulk State and at its (001) Surfaces

  • Jin, Ying-Jiu;Lee, Jae-Il
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.115-119
    • /
    • 2008
  • The authors predicted that $Co_2HfSi$, a $Co_2$-based full Heusler alloy, is being a half-metallic ferromagnet by first-principles calculations using the all electron full-potential linearized augmented plane wave method which adopts the generalized gradient approximation. The integer value of the calculated total magnetic moment of 2.00 ${\mu}_B$ per formula unit and a spin gap of 0.69 eV in spin down state confirmed the half-metallicity of bulk $Co_2HfSi$. For the $Co_2HfSi$(001) surface, we considered two possible surface terminations, namely, Co terminated and HfSi terminated surfaces. It was found that half-metallicity was retained at the HfSi-terminated surface but not at the Co-terminated surface. The magnetic moment of surface Co atoms in the Co-terminated surface was slightly lower than that of Co atoms in deep inner-layers, whereas the magnetic moments of Hf and Si atoms at the HfSi-terminated surface were almost same as those in deep inner-layers.

Investigation on the Origin of Band Gap in Heusler Alloy Co2MnSi through First-principles Electronic Structure Calculation (호이슬러 화합물 Co2MnSi에서 전자구조계산을 통한 에너지 간격의 원인에 대한 고찰)

  • Kim, Dong-Chul;Lee, Jae-Il
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.201-205
    • /
    • 2008
  • In order to investigate the origin of the band gap in the half-metallic Heusler alloy, $Co_2MnSi$, through the electronic structure calculation, we have calculated the electronic structures for the compounds consisted of parts of Heusler structures, i.e. zinc-blende CoMn, half-Heusler CoMnSi, and artificial $Co_2Mn$, using the full-potential first-principles band calculation method. By investigating the band hybridization and energy gap for the calculated density of states for these compounds, we found that the the origin of the band gap is not consistent with the explanation discussed by Galanakis et al. We have also discussed the magnetism for these compounds by the calculated number of majority- and minority-spin electrons.

Half-metallic and Magnetic Properties of (001) Surfaces of KCaN2 Compound in full-Heusler Structure

  • Bialek, Beata;Lee, Jae Il
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.375-379
    • /
    • 2013
  • The electronic and the magnetic properties of (001) surface of $KCaN_2$ half-metallic compound with full-Heusler structure are studied with the use of a full-potential linearized augmented plane wave method. Two possible terminations of the surface are considered and only the one with N atoms in the topmost layer is found to retain the half-metallic properties of the bulk. The magnetic properties of N-terminated surface are enhanced compared with the properties of the bulk. The calculated magnetic moments on the N atoms in the $KCaN_2$ are 1.26 ${\mu}_B$ in the bulk and 1.90 ${\mu}_B$ at the surface. The subsurface metal atoms are also slightly polarized. In the surface terminated with metal atoms, not only the half-metallicity is destroyed, but also the magnetic properties of the system are weakened.

Thermoelectric properties of FeVSb1-xTex half-heusler alloys fabricated via mechanical alloying process

  • Hasan, Rahidul;Ur, Soon-Chul
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.582-588
    • /
    • 2019
  • FeVSb1-xTex (0.02 ≤ x ≤ 0.10) half-Heusler alloys were fabricated by mechanical alloying process and subsequent vacuum hot pressing. Near single half-Heusler phases are formed in vacuum hot pressed samples but a second phase of FeSb2 couldn't be avoided. After doping, the lattice thermal conductivity in the system was shown to decrease with increasing Te concentration and with increasing temperature. The lowest thermal conductivity was achieved for FeVSb0.94Te0.06 sample at about 657 K. This considerable reduction of thermal conductivities is attributed to the increased phonon scattering enhanced by defect structure, which is formed by doping of Te at Sb site. The phonon scattering might also increase at grain boundaries due to the formation of fine grain structure. The Seebeck coefficient increased considerably as well, consequently optimizing the thermoelectric figure of merit to a peak value of ~0.24 for FeVSb0.94Te0.06. Thermoelectric properties of various Te concentrations were investigated in the temperature range of around 300~973 K.