DOI QR코드

DOI QR Code

Electronic Structure and Half-Metallicity in the Zr2RuZ (Z = Ga, In, Tl, Ge, Sn, and Pb) Heusler Alloys

  • Eftekhari, A. (Department of Physics, Shahreza Branch, Islamic Azad University) ;
  • Ahmadian, F. (Department of Physics, Shahreza Branch, Islamic Azad University)
  • Received : 2017.09.19
  • Accepted : 2018.05.14
  • Published : 2018.11.15

Abstract

The electronic structures, magnetic properties and half-metallicity in $Zr_2RuZ$ (Z = Ga, In, Tl, Ge, Sn, and Pb) alloys with $AlCu_2Mn-$ and $CuHg_2Ti$-type structures were investigated using first-principles density functional theory (DFT) calculations. The calculations showed that $Zr_2RuIn$, $Zr_2RuTl$, $Zr_2RuSn$, and $Zr_2RuPb$ compounds with $CuHg_2Ti$-type structures were half-metallic ferromagnets with half-metallic band gaps of 0.18, 0.24, 0.22, and 0.27 eV, respectively. The half-metallicity originated from d-d and covalent hybridizations between the transition metals Zr and Ru. The total magnetic moments of the $Zr_2RuZ$ (Z = In, Tl, Sn, and Pb) compounds with $CuHg_2Ti$-type structures were integer values of $1{\mu}B$ and $2{\mu}B$, which is in agreement with Slater-Pauling rule ($M_{tot}=Z_{tot}-18$). Among these compounds, $Zr_2RuIn$ and $Zr_2RuTl$ were half-metals over relatively wide regions of the lattice constants, indicating that these two new Heusler alloys are ideal candidates for use in spintronic devices.

Keywords

References

  1. H. Ohno, Science. 281, 951(1998). https://doi.org/10.1126/science.281.5379.951
  2. S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Ksenofontov, C. Felser and H. Lin, Appl. Phys. Lett. 88, 032503 (2006). https://doi.org/10.1063/1.2166205
  3. R. A. De Groot, F. M. Mueller, P. G. van Engen and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024
  4. X. Q. Chen, R. Podloucky and P. Rogl, J. Appl. Phys. 100, 113901 (2006). https://doi.org/10.1063/1.2374672
  5. K. Ozdogan, I. Galanakis, E. Sasioglu and B. Aktas, Solid State Commun. 142, 492 (2007). https://doi.org/10.1016/j.ssc.2007.04.013
  6. H. C. Kandpal, G. H. Fecher and C. Felser, J. Phys. D: Appl. Phys. 40, 1507 (2007). https://doi.org/10.1088/0022-3727/40/6/S01
  7. G. D. Liu, X. F. Dai, H. Y. Lui, J. L. Chen, Y. X. Li, G. Xiao and G. H. Wu, Phys. Rev. B 77, 014424 (2008). https://doi.org/10.1103/PhysRevB.77.014424
  8. K. Ozdogan and I. Galanakis, J. Magn. Magn. Mater. 321, L34 (2009). https://doi.org/10.1016/j.jmmm.2009.01.006
  9. V. Sharma, A. K. Solanki and A. Kashyap, J. Magn. Magn. Mater. 322, 2922 (2010). https://doi.org/10.1016/j.jmmm.2010.05.006
  10. Z. Szotek, W. M. Temmerman, A. Svane, L. Petit, G. M. Stocks and H. Winter, J. Magn. Magn. Mater. 272, 1816 (2004).
  11. W. Song, J. Wang and Z. Wu, Chem. Phys. Lett. 482, 246 (2009). https://doi.org/10.1016/j.cplett.2009.10.024
  12. S. Lv, H. Li, D. Han, Z. Wu, X. Liu and J. Meng, J. Magn. Magn. Mater. 323, 416 (2011). https://doi.org/10.1016/j.jmmm.2010.09.033
  13. Y. Zhang, W. Liu and H. Niu, Solid State Commun. 145, 590 (2008). https://doi.org/10.1016/j.ssc.2007.12.022
  14. Y. Saeed, S. Nazir, A. Shaukat and A. H. Reshak, J. Magn. Magn. Mater. 322, 3214 (2011).
  15. I. Galanakis and P. Mavropoulos, Phys. Rev. B 67, 104417 (2003). https://doi.org/10.1103/PhysRevB.67.104417
  16. Y. Q. Xu, B. G. Liu and D. G. Pettifor, Physica B 329, 1117 (2003).
  17. K. L. Yao, G. Y. Gao, Z. L. Liu and L. Zhu, Solid State Commun. 133, 301 (2005). https://doi.org/10.1016/j.ssc.2004.11.016
  18. K. L. Yao, G. Y. Gao, Z. L. Liu, L. Zhu and Y. L. Li, Physica B 366, 62 (2005). https://doi.org/10.1016/j.physb.2005.05.024
  19. X. F. Ge and Y. M. Zhang, J. Magn. Magn. Mater. 321, 198 (2009). https://doi.org/10.1016/j.jmmm.2008.08.110
  20. F. Heusler, Verhandlungen Der Deutschen Physikalischen Gesellschaft. 5, 219 (1903).
  21. N. Xing, Y. Gong, W. Zhang, J. Dong and H. Li, Comput. Mater. Sci. 45, 489 (2009). https://doi.org/10.1016/j.commatsci.2008.11.008
  22. X-Q. Chen, R. Podloucky and P. Rogl, J. Appl. Phys. 100, 113901 (2006). https://doi.org/10.1063/1.2374672
  23. K. Ozdogan, I. Galanakis, E. Sasioglu and B. Aktas, Solid State Commun. 142, 492 (2007). https://doi.org/10.1016/j.ssc.2007.04.013
  24. H. C. Kandpal, G. H. Fecher and C. Felser, J. Phys. D: Appl. Phys. 40, 1507 (2007). https://doi.org/10.1088/0022-3727/40/6/S01
  25. G. D. Liu, X. F. Dai, H. Y. Lui, J. L. Chen, Y. X. Li, G. Xiao and G. H. Wu, Phys. Rev. B 77, 14424 (2008). https://doi.org/10.1103/PhysRevB.77.014424
  26. V. Sharma, A. K. Solanki and A. Kashyap, J. Magn. Magn. Mater. 322, 2922 (2010). https://doi.org/10.1016/j.jmmm.2010.05.006
  27. H. Mori, Y. Odahara, D. Shigyo, T. Yoshitake and E. Miyoshi, Thin Solid Films 520, 4979 (2012). https://doi.org/10.1016/j.tsf.2012.03.045
  28. G. D. Liu, X. F. Dai, H. Y. Liu, J. L. Chen and Y. X. Li, Phys. Rev. B 77, 014424 (2008). https://doi.org/10.1103/PhysRevB.77.014424
  29. H. Z. Luo, Z. Z. Zhu, L. Ma, S. F. Xu, H. Y. Liu and G. H. Wu, J. Phys. D: Appl. Phys. 40, 7121 (2007). https://doi.org/10.1088/0022-3727/40/22/039
  30. I. Galanakis, K. Ozdogan, E. Sasioglu and B. Aktas, Phys. Rev. B 75, 172405 (2007). https://doi.org/10.1103/PhysRevB.75.172405
  31. J. Li, Y. X. Li, G. X. Zhou, Y. B. Sun and C. Q. Sun, Appl. Phys. Lett. 94, 242502 (2009). https://doi.org/10.1063/1.3156811
  32. X-P. Wei, J-B. Deng, Ge-Y. Mao, S-B. Chu and X-R Hu, Intermetallics. 29, 86 (2012). https://doi.org/10.1016/j.intermet.2012.05.002
  33. F. Ahmadian and R. Alinajimi, Comput. Mater. Sci. 79, 345 (2013). https://doi.org/10.1016/j.commatsci.2013.06.034
  34. F. Meng, H. Hao, Y. Ma, X. Guo and H. Luo, J. Alloys Compd. 695, 2995 (2017). https://doi.org/10.1016/j.jallcom.2016.11.358
  35. A. Birsan and V. Kuncser, J. Magn. Magn. Mater. 406, 282 (2016). https://doi.org/10.1016/j.jmmm.2016.01.032
  36. S. Yousuf and D. C. Gupta, Mater. Chem. Phys. 192, 33 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.056
  37. X-P. Wei, Y-L. Zhang, T. Wang, X-W. Sun, T. Song, P. Guo and J-B. Deng, Mater. Res. Bull. 86, 139 (2017). https://doi.org/10.1016/j.materresbull.2016.10.013
  38. B. G. Yalcin, J. Magn. Magn. Mater. 408, 13 (2016). https://doi.org/10.1016/j.jmmm.2016.01.091
  39. X. T. Wang, T. T. Lin, H. Rozale, X. F. Dai and G. D. Liu, J. Magn. Magn. Mater. 402, 190 (2016). https://doi.org/10.1016/j.jmmm.2015.11.062
  40. L. Zhang, X. T.Wang, H. Rozale, Y. C. Gao, L. Y.Wang and X. B. Chen, Curr. Appl. Phys. 15, 1117 (2015). https://doi.org/10.1016/j.cap.2015.06.016
  41. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Hvasnicka, J. Luitz, R. Laskowski, F. Tran and L. D. Marks, WIEN2k, an augmented plane wave local orbitals program for calculating crystal properties (Vienna University of Technology Institute of Materials Chemistry Getreidemarkt 9/165-TC A-1060 Vienna, Austria), ISBN 3-9501031-1-2; 2001.
  42. J. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  43. F. D. Murnaghan, Proc. Natl. Acad. Sci. USA. 30, 244 (1947).
  44. S. Skaftouros, K. Ozdogan, E. Sasioglu and I. Galanakis, Phy. Rev. B 87, 024420 (2013). https://doi.org/10.1103/PhysRevB.87.024420
  45. Z. Y. Deng and J. M. Zhang, J. Magn. Magn. Mater. 397, 120 (2016). https://doi.org/10.1016/j.jmmm.2015.08.089
  46. Semiconductors: Physics of Group IV Elements and III-V Compounds, Landolt-Bornstein, New Series, Group III, edited by O. Madelung (Springer-Verlag, Berlin, 1982), Vol. 17, Pt. a.
  47. O. Madelung, W. von der Osten and U. Rossler, Semiconductors: Intrinsic Properties of Group IV Elements and III-V, II-VI and I-VIII Compounds, Landolt-Bornstein, New Series, Group III, edited by O. Madelung, (Springer-Verlag Berlin Heidelberg, 1987), Vol. 22, Pt. a.

Cited by

  1. Ab Initio Study of the Magnetism and Half-Metallic Properties of d0 Quaternary Heusler Alloys BaNYO (Y = K, Rb, and Cs) vol.111, pp.12, 2020, https://doi.org/10.1134/s0021364020120012