• Title/Summary/Keyword: half angle

Search Result 372, Processing Time 0.023 seconds

Influence of Transition from the Half-Kneel to Standing Posture in Hemiplegic Patients (편마비 환자의 반 무릎서기 자세가 일어서기 동작 수행에 미치는 영향)

  • Yang, Dae-Jung;Jang, Il-Yong;Park, Seung-Kyu;Lee, Jun-Hee;Kang, Jung-Il;Chun, Dong-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.5
    • /
    • pp.49-56
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the kinematic characteristics and muscle activities during the following two conditions: transition from half-kneel to standing on the affected leg and non-affected leg. Methods: Twenty-one hemiplegic patients participated in the study. A motion analysis system was used to record the range of motion and angle velocity of the hip, knee and ankle from the half-kneel to the standing position. Electromyography was used to record the activity of 4 muscles. Results: The statistical analysis showed that the minimum ROM of the hip joint was less on the affected leg during transition from half-kneel to standing. However, the minimum ROM of the knee and ankle joints was less on the non-affected leg during transition from half-kneel to standing. The angle velocity of the knee and ankle joints was less during transition from half kneeling to standing on the non-affected leg. Muscle activity of the rectus femoris and tibialis anterior was less while moving from half-kneel to the standing position on the affected leg. Conclusion: These results show that greater active ROM of the knee and ankle was required on the affected leg for transition from half-kneel to the standing position than for normal gait. Muscle activity of the rectus femoris and tibialis anterior is normally required for movement from the half-kneel to the standing position during normal gait. Further studies are needed to investigate the antigravity movement in healthy subjects and hemiplegic patients in order to completely understand the normal and abnormal movement from the half-kneel to the standing position.

Birefringence measurements of lmol%Mg:LiNbO3 with Noncollinea­rphase­matching cone

  • Lee, Jong-Soo;Rhee, Bum-Ku;Joo, Gi-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.54-57
    • /
    • 1998
  • A noncollinear-phase-matching cone of second harmonic generation(SHG) was observed in a LiNbO3 crystal doped with l mol% MgO. Birefringence refractive indices can be accurately evaluated by analysing the temperature phase matching characteristic for SHG combined with the measurement of the half cone angle. The electro-optic coefficient can also be determined form the observed change of the half cone angle when a DC electric field is applied along the optic axis.

Effect of the Electrode Edge on the Viewing Angle Property of a Patterned Vertical Alignment Liquid Crystal Cell

  • Choi, Jung-Min;Ji, Seung-Hoon;Lee, Gi-Dong
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.1-5
    • /
    • 2008
  • This paper investigates the effect of the electrode edge of a patterned vertical alignment (PVA) liquid crystal (LC) device on the viewing angle characteristics. In general, a transmissive LCD applies an LC layer with half-wave retardation for a bright state and with zero retardation for a dark state. The retardation of the LC layer would be distorted in each point, however, when a voltage is applied because of the non-uniform voltage distribution in the electrode edge effect. In this paper, the feasibility of the full effect of the electrode edge on the viewing angle property is considered, and the optical viewing angles of the VA LCD with a uniform half-wave LC layer and the PVA LCD with a practical non-uniform LC layer are compared.

Prediction of Fatigue Life in 2024-73 Aluminum Using X-ray half-value breadth

  • Kim, Soon-Ho;Cho, Seok-Swoo;Park, Jung-Hyeon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.78-86
    • /
    • 2002
  • In general, X-ray diffraction method detects the changes of crystal lattice under material surface using the angle of diffraction 2$\theta$. This technique which deals with in the presented paper can be applied to a behavior on the slipped band or the micro crack cause to material degradation. The relation between half-value breadth and cycle numbers shows three stages, which consist of rapid decrease in the initial cycle, slight decrease in the middle cycle, and then rapid decrease in the final cycle. The ratio of half-value breadth has a constant value on B/B$\_$0/ - N diagram under the loading condition except early part of fatigue life. The ratio of half-value breadth B/B$\_$0/ - log N$\_$f/ with respect to number of cycle to failure N$\_$f/ has linear behavior on B/B$\_$0/ - log N$\_$f/ diagram. Therefore, the evaluation of fatigue life by the average gradient has much less mean error than the estimation of fatigue life by log B/B$\_$0/ - log N/N$\_$f/ relation.

A Study on the Prediction of Fatigue Life in 2024-T3 Aluminium using X-ray Half-Value Breadth (X선 반가폭을 이용한 Al 2024-T3 합금의 피로수명예측에 관한 연구)

  • 조석수;김순호;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.145-152
    • /
    • 2000
  • X-ray diffraction method detects change of crystal lattice distance under material surface using diffraction angle 2$\theta$. This technique can be applied to the behavior on slip band and micro crack due to material degradation. The relation between half-value breadth and number of cycle has three stages which constitute rapid decrease in initial number of cycles, slight decrease in middle number of cycles and rapid decrease in final number of cycles. The ratio of half-value breadth takes a constant value on B/B$_{0}$-N diagram with loading condition except early part of fatigue life. The ratio of half-value breadth B/B$_{0}$ with respect to number of cycle to failure N$_{f}$ has linear behavior on B/B$_{0}$-log N$_{f}$ diagram. Therefore, in this paper the estimation of fatigue life by average gradient method has much less estimated mean error than the estimation of fatigue life by log B/B$_{0}$-log N/N$_{f}$ relation.elation.ation.

  • PDF

Comparison of Femoral Anteversion Angle and Determination of Reliability Measured at Three Different Anatomical References of the Tibial Crest During the Trochanteric Prominence Angle Test

  • Lee, Ji-Hyun;Yoon, Tae-Lim;Choi, Sil-Ah;Cynn, Heon-Seock
    • Physical Therapy Korea
    • /
    • v.19 no.4
    • /
    • pp.55-60
    • /
    • 2012
  • The trochanteric prominence angle test (TPAT) has been used to measure the femoral anteversion angle between the tibial crest and the vertical line. However, the exact anatomical reference of the tibial crest has not yet been identified in the literature. Thus, the purposes of this research were twofold: first, to compare the femoral anteversion angle measured at three different anatomical references of the tibial crest (the proximal tibial crest, the proximal third of tibial crest, and the proximal half of tibial crest) and, second, to determine inter-and intra-rater reliabilities of the femoral anteversion angle measured at these three different anatomical references of the tibial crest during the TPAT. We recruited 14 healthy subjects, and a total of 28 legs were examined. The TPAT was measured using a digital inclinometer. A 1-way repeated-measure analysis of variance was used to compare the femoral anteversion angle measured at three different anatomical references of the tibial crest, and intraclass correlation coefficients (ICCs) were calculated to determine reliability. The femoral anteversion angle measured at the proximal tibial crest was significantly higher than that at the proximal third of the tibial crest and the proximal half of the tibial crest. The inter-and intra-rater reliabilities of femoral anteversion angle were measured at three anatomic references of the tibial crest were all found to be high during the TPAT (ICC=.9 0~.98). In conclusion, clinicians should recognize that the different degrees of the femoral anteversion angle could be measured when different anatomical references of the tibial crest were used, and that reliabilities were high when an exact anatomical reference of the tibial crest was used during the TPAT.

Phase Angle Control in Resonant Inverters with Pulse Phase Modulation

  • Ye, Zhongming;Jain, Praveen;Sen, Paresh
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.332-344
    • /
    • 2008
  • High frequency AC (HFAC) power distribution systems delivering power through a high frequency AC link with sinusoidal voltage have the advantages of simple structure and high efficiency. In a multiple module system, where multiple resonant inverters are paralleled to the high frequency AC bus through connection inductors, it is necessary for the output voltage phase angles of the inverters be controlled so that the circulating current among the inverters be minimized. However, the phase angle of the resonant inverters output voltage can not be controlled with conventional phase shift modulation or pulse width modulation. The phase angle is a function of both the phase of the gating signals and the impedance of the resonant tank. In this paper, we proposed a pulse phase modulation (PPM) concept for the resonant inverters, so that the phase angle of the output voltage can be regulated. The PPM can be used to minimize the circulating current between the resonant inverters. The mechanisms of the phase angle control and the PPM were explained. The small signal model of a PPM controlled half-bridge resonant inverter was analyzed. The concept was verified in a half bridge resonant inverter with a series-parallel resonant tank. An HFAC power distribution system with two resonant inverters connected in parallel to a 500kHz, 28V AC bus was presented to demonstrate the applicability of the concept in a high frequency power distribution system.

An Experimental Study on the Flow Characteristics with the Impinging Angles of Defrost Nozzle Jet Inside a Vehicle Passenger Compartment (차실내 Defrost 노즐 분류의 충돌각 변화에 따른 유동특성에 관한 실험적 연구)

  • Kim, Duck-Jin;Kim, Hyun-Joo;Rho, Byung-Joon;Lee, Jee-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.1024-1032
    • /
    • 2007
  • The flow characteristics with the impinging angles of defrost nozzle jet inside a commercial vehicle passenger compartment were investigated experimentally by using the two-dimensional duct-nozzle model. The shape of the nozzle contraction was designed according to the curved line of cubic equation to the vertical plan of the flow direction. The impinging angles, defined as the angle between nozzle axis and a vertical line to the windshield, were varied from the $0^{\circ}\;to\;80^{\circ}$. The mean velocity distributions, the half-widths, and the momentum distributions with the cases of both the free jet and the impinging jet onto the dummy windshield were measured. The impinging jet flows similarly with wall jet from $X/b_o=20$, and the impinging angle has an effect on the half-width of the impinging jet. The momentum distributions onto the windshield increased with the increase of impinging angle, and then their inflection point was observed around the impinging angle of $60^{\circ}$.

The Characteristic of a Hydrostatic Extrusion of Magnesium Alloy(AZ31) (Mg 합금(AZ31)의 열간 정수압 압출 특성에 관한 연구(I))

  • Yoon D. J.;Seo Y. W.;Jeong H. G.;Na K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.128-131
    • /
    • 2004
  • Magnesium alloys are being extensively used in weight-saving applications and as a potential replacement for plastics in electronic and computer applications. Magnesium alloy has some good characteristics, EMI shielding property and high specific strength. Nevertheless their high brittleness make it uneasy to process the magnesium. Magnesium alloys are extruded like aluminium alloys. The present work was done to find a characteristic of magnesium alloy(AZ31) changing the extrusion ratio 8.5, 19.1, 49 respectly and changing the die half angle $30^{\circ},\;45^{\circ},\;60^{\circ}$. Here this present done by the hydrostatic extrusion in the hot condition, $310^{\circ}$. The higher the extrusion ratio goes, the higher the extrusion force goes.

  • PDF

The Effects on Kinematics and Joint Coordination of Ankle and MTP Joint as Bending Stiffness Increase of Shoes during Running (달리기 시 인솔의 굽힘 강성 증가에 따른 발목과 중족골 관절의 운동학적 변인 및 관절 협응에 미치는 영향)

  • Kim, Sungmin;Moon, Jeheon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.205-213
    • /
    • 2021
  • Objective: The aim of this study was to analyze body stability Joint coordination pattern though as bending stiffness of shoes during stance phase of running. Method: 47 male subjects (Age: 26.33 ± 2.11 years, Height: 177.32 ± 4.31 cm, Weight: 65.8 ± 3.87 kg) participated in this study. All subjects tested wearing the same type of running shoes by classifying bending stiffness (A shoes: 3.2~4.1 N, B shoes: 9.25~10.53 N, C shoes: 20.22~21.59 N). They ran 10 m at 3.3 m/s (SD ±3%) speed, and the speed was monitored by installing a speedometer at 3 m intervals between force plate, and the measured data were analyzed five times. During running, ankle joint, MTP joint, coupling angle, inclination angle (anterior-posterior, medial-lateral) was collected and analyzed. Vector coding methods were used to calculate vector angle of 2 joint couples during running: MTP-Ankle joint frontal plane. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was Bonferroni. Results: Results indicated that there was an interaction between three shoes and phases for MTP (Metatarsalphalangeal) joint angle (p = .045), the phases in the three shoes showed difference with heel strike~impact peak (p1) (p = .000), impact peak~active peak (p2) (p = .002), from active peak to half the distance to take-off until take-off (p4) (p = .032) except for active peak~from active peak to half the distance to take-off (p3) (p = .155). ML IA (medial-lateral inclination angle) for C shoes was increased than other shoes. The coupling angle of ankle angle and MTP joint showed that there was significantly difference of p2 (p = .005), p4 (p = .045), and the characteristics of C shoes were that single-joint pattern (ankle-phase, MTP-phase) was shown in each phase. Conclusion: In conclusion, by wearing high bending stiffness shoes, their body instability was increased during running.