• Title/Summary/Keyword: hairpin resonator

Search Result 36, Processing Time 0.024 seconds

Design of SIR-based Bandstop Filter with Symmetrical Hairpin Wideband (SIR 기반 대칭 헤어핀 광대역 대역저지 여파기)

  • Kim, Chang-Soon;Lee, Yong-IL
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.43-46
    • /
    • 2018
  • This paper has designed a wideband bandpass filter (WBSF : Wide Band Stop Filter) using a stepped impedance resonator (SIR : Stepped Impedance Resonator) with improved performance and improved hairpin coupling structure. The SIR WBSF is small in size and has the advantage of having excellent bandstop characteristics. The designed BSF has a structure in which a quadrangular shaped hairpin of a / 4 length is arranged symmetrically on the upper and lower sides of the input and output transmission lines. The input and output terminals were terminated at 50 ohms for system applications. The center frequency of the SIR WBSF is 6.3 GHz, which is the second harmonic of 3.15 GHz. The designed filter has a 3dB bandwidth of 2.9 GHz and a transmission coefficient ($S_{21}$) of 33.2 dB. The reflection coefficient ($S_{11}$) at the center frequency is 0.106 dB. The application field is used for fixed microwave relay stations, fixed satellite and earth stations, and fixed satellite communications. The overall size is $20mm{\times}10mm$.

Novel Phase Noise Reduction Method for CPW-Based Microwave Oscillator Circuit Utilizing a Compact Planar Helical Resonator

  • Hwang, Cheol-Gyu;Myung, Noh-Hoon
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.529-532
    • /
    • 2006
  • This letter describes a compact printed helical resonator and its application to a microwave oscillator circuit implemented in coplanar waveguide (CPW) technology. The high quality (Q)-factor and spurious-free characteristic of the resonator contribute to the phase noise reduction and the harmonic suppression of the resulting oscillator circuit, respectively. The designed resonator showed a loaded Q-factor of 180 in a chip area of only 40% of the corresponding miniaturized hairpin resonator without any spurious resonances. The fully planar oscillator incorporated with this resonator showed an additional phase noise reduction of 10.5 dB at a 1 MHz offset and a second harmonic suppression enhancement of 6 dB when compared to those of a conventional CPW oscillator without the planar helical resonator structure.

  • PDF

An Oscillator Incorporating a Planar Helical Resonator for Phase Noise Reduction and Harmonic Suppression

  • Hwang Cheol-Gyu;Myung Noh-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.3
    • /
    • pp.160-164
    • /
    • 2006
  • This paper describes a compact printed helical resonator and its application to a microwave oscillator circuit implemented in coplanar waveguide(CPW) technology. The high Q-factor and spurious-free characteristic of the resonator contribute to the phase noise reduction and the harmonic suppression of the resulting oscillator circuit, respectively. The designed resonator resonating at the frequency of 5.5 GHz showed a loaded Q of 180 in a chip area of only 40 % of the corresponding miniaturized hairpin resonator without any spurious resonances. The fully planar oscillator incorporated with this resonator showed additional phase noise reduction of 10.5 dB at 1 MHz offset and a second harmonic suppression enhancement of 6 dB when compared to those of a conventional CPW oscillator without the planar helical resonator(PHR) structure.

A Study on the Design and Implementation of the Oscillator Using a Miniaturized Hairpin Ring Resonator (소형화된 헤어핀 링 공진기를 이용한 발진기 설계 및 제작에 관한 연구)

  • Kim, Jang-Gu;Choi, Byoung-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.122-131
    • /
    • 2008
  • In this paper, an S-band oscillator of the low phase noise property using miniaturized microstrip hairpin shaped ring resonator has been designed and implemented. The TACONIC's RF-35 substrate has a dielectric constant ${\varepsilon}_r$=3.5 a thickness h=20mil a copper thickness t=17 um and loss tangent $tan{\delta}$=0.0025. The designed and implemented 2.45 GHz oscillator shows low phase performance of -100.5 dBc/Hz a 100kHz offset. Output power 20.9 dBm at center frequency 2.45 GHz and harmonic suppression -32 dBc. The circuit was implemented with hybrid technique. But can be fully compatible with the RFIC's, MIC and MMIC due to its entirely planar structure.

  • PDF

Harmonic-Suppressed Hairpin Bandpass Filter for the Microwave Radiometer (마이크로파 라디오미터를 위한 하모닉 억제 특성을 가진 헤어핀 필터)

  • Yun, Tae-Soon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1169-1174
    • /
    • 2014
  • In this paper, for improving the performance of selecting and the sensitivity of the L-Band microwave radiometer for remote sensing of soil-moisture, the harmonic-suppressed hairpin bandpass filter is described. As the harmonic frequencies of the SIR can be controlled by the ratio of the impedance and electrical length, SIRs are used in the hairpin BPF for suppressing harmonics. Manufactured harmonic-suppressed hairpin BPF has the SIRs of three types and its harmonic is suppressed under 35 [dB] until 5 times of the center frequency of 1390 [MHz].

An X-band Low Phase Noise MMIC Oscillator Using a Planar-Type MMIC Resonator (평면형 MMIC 공진기를 이용한 낮은 위상잡음을 갖는 X 대역 MMIC 발진기)

  • Lee, Mun-Gyu;Jo, Il-Hyeon;Choe, Jong-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.1 s.12
    • /
    • pp.38-46
    • /
    • 2007
  • In this paper an X-band low phase noise HBT oscillator using a planar type MMIC resonator is designed. The chip area of the proposed resonator shows a quarter of the conventional hair-pin resonator using distributed transmission lines. The measurement results show oscillation frequency of 8.295 GHz, the power output of 4.8 dBm, and phase noise characteristic of -106.8 dBc/Hz and -121.7 dBc/Hz at 100 kHz and 1 MHz offset frequencies respectively.

  • PDF

A Miniaturized Aperture-Coupled Multilayer Hairpin Bandpass Filter

  • Moon, Han-Ul;Choi, Seung-Un;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.12-16
    • /
    • 2008
  • In this paper, we introduce a coupling, which is achieved through the aperture instead of the conventional edge coupling, so that the bandpass filter is reduced less than half in size compared to conventional planar type. The resulting filter configuration has a near two-fold symmetry, where the aperture coupling is used in the middle of the coupling stages. We designed a bandpass filter using two tapped hairpin resonators, of which the order becomes four. The designed bandpass filter has the size of $8.9{\times}18.3\;mm$. It has the return loss better than 17dB and the insertion loss of less than 5 dB in overall passband. The measured results show good agreements with simulated ones.

Compact 40 GHz Hairpin Band-Pass Filter (초소형 40 GHz Hairpin 대역통과 여파기)

  • Lee, Young Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.27-30
    • /
    • 2018
  • In this study, a 40 GHz band pass filter(BPF) employing a hair-pin structure has been designed, fabricated, and characterized for millimeter-wave wireless communication applications. Using the 3 dimensional(3-D) electromagnetic(EM) tool and design equations of the hairpin BPF, the BPF was desgned on the 5 mil-thick Duroid substrate(RT5880) with a relative dielectric constant (${\varepsilon}_r$) of 2.2. The tapping point (t) of the U-shape resonator in the input and output port has been determined using extracted an external Q-factor ($Q_e$). The coupling coefficients between the other resonators are calculated by adjusting the physical dimensions for the desired response of the BPF. The fabricated BPF was characterized using probing method on a probe station. Its measured center frequency(fc) and fractional BW are 41.6 GHz and 7.43 %, respectively. The measured return loss is below -10 dB at the pass band and the insertion loss is 3.87 dB. The fabricated BPF is as small as $9.1{\times}2.8mm^2$.

Design of a S-band Oscillator Using Vertical Split Ring Resonator (수직 분할 링 공진기를 이용한 S-밴드 발진기 설계)

  • Lee, Ju-Heun;Hong, Min-Cheol;Oh, Jeong-Taek;Yoon, Won-Sang
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.3
    • /
    • pp.43-50
    • /
    • 2019
  • In this paper, we propose a S-band oscillator with a reduced electrical size by applying a vertical split ring resonator(VSRR). The VSRR is a type of split ring resonator that operates as a resonator by the capacitance and inductance generated between the microstrip lines arranged on the top and bottom of the dielectric substrate and it has an advantage that the electrical size of the resonance circuit can be reduced as compared with the conventional ring resonator. In this paper, we design a VSRR operating over S-band and an oscillator using the VSRR as the resonant circuit. The proposed oscillator showed the output of 5.9dBm at 2.4HGz and showed the phase noise characteristics of -112.58dBc at 100KHz offset frequency and -117.85dBc at 1MHz offset.