DOI QR코드

DOI QR Code

Design of a S-band Oscillator Using Vertical Split Ring Resonator

수직 분할 링 공진기를 이용한 S-밴드 발진기 설계

  • 이주흔 (호서대학교 전자디스플레이공학부) ;
  • 홍민철 (호서대학교 전자디스플레이공학부) ;
  • 오정택 (호서대학교 전자디스플레이공학부) ;
  • 윤원상 (호서대학교 전자디스플레이공학부)
  • Received : 2018.11.08
  • Accepted : 2019.01.17
  • Published : 2019.03.31

Abstract

In this paper, we propose a S-band oscillator with a reduced electrical size by applying a vertical split ring resonator(VSRR). The VSRR is a type of split ring resonator that operates as a resonator by the capacitance and inductance generated between the microstrip lines arranged on the top and bottom of the dielectric substrate and it has an advantage that the electrical size of the resonance circuit can be reduced as compared with the conventional ring resonator. In this paper, we design a VSRR operating over S-band and an oscillator using the VSRR as the resonant circuit. The proposed oscillator showed the output of 5.9dBm at 2.4HGz and showed the phase noise characteristics of -112.58dBc at 100KHz offset frequency and -117.85dBc at 1MHz offset.

본 논문에서는 수직 분할 링 공진기(VSRR, Vertical Split Ring Resonator)를 적용하여 전기적 크기를 축소시킨 발진기를 제안하였다. VSRR은 유전체 기판의 상면과 하면에 일렬로 놓인 마이크로스트립 라인간에 발생하는 커패시턴스와 인덕턴스에 의해서 공진기로 동작하는 분리형 링 공진기(Split Ring Resonator)형태이며, 마이크로스트립 라인을 이용한 일반적인 hairpin 형태 또는 평면형 링 공진기에 비해 공진 회로의 전기적 크기를 축소할 수 있는 장점이 있다. 본 논문에서는 S-band에서 동작하는 VSRR을 설계하고, 이를 공진회로로 사용한 발진기를 설계 및 구현한 결과를 제시하였다. 제안된 발진기는 2.4GHz에서 5.9dBm의 출력을 나타내었으며, 오프셋 주파수 100kHz에서 -112.58dBc@Hz, 1MHz에서 -137.36dBc@Hz의 위상잡음 특성을 나타내었다.

Keywords

References

  1. Thomas H. Lee, "Oscillator Phase Noise: A Tutorial", IEEE J. of Solid-State Circuits, Vol. 35, No. 3, pp. 326-336, Mar. 2000. https://doi.org/10.1109/4.826814
  2. A. Hajimiri and T. Lee, "A general theory of phase noise in electrical oscillator", IEEE J. of Solid-State Circuits, Vol. 33, No. 2, pp. 179-194, Feb. 1998. https://doi.org/10.1109/4.658619
  3. D. S. Kim, S. H. Chai, and W. S. Yoon, "Design of Wideband Voltage Controlled Oscillator with Capacitor-Bank for IoT Sensor System", Journal of KIIT, Vol. 14, No. 9, pp. 11-18, Sep. 2016.
  4. M. Y. Lee, "A Low power CMOS LC-tank VCO and Phase-shifting Network", Journal of KIIT, Vol. 10, No. 1, pp. 47-52, Jan. 2012.
  5. E. Holtzman, "Solid State Microwave Power Oscillator Design", Artech House, 1992.
  6. C. Hwang, J. Lee, J. Kim, N. Myung, and J. Song, "Simple K-band MMIC VCO utilizing a miniaturized hairpin resonator and a three terminal p-HEMT varactor with low phase noise and high output power properties," IEEE Microwave Wireless Compon. Lett. Vol. 13, No. 6, pp. 229-231, Jun. 2003. https://doi.org/10.1109/LMWC.2003.814595
  7. Xian Qi Lin and Tie Jun Cui, "Controlling the Bandwidth of Split Ring Resonators", IEEE Microwave Wireless Compon. Lett. Vol. 18, No. 4, pp. 245-247, Apr. 2008 https://doi.org/10.1109/LMWC.2008.918881
  8. A. K. Horestani, C. Fumeaux, S. F. Al-Sarawi, and D. Abbott, "Split ring resonators with tapered strip width for wider bandwidth and enhanced resonance", IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 9, pp. 450-452, Sep. 2012. https://doi.org/10.1109/LMWC.2012.2211341
  9. A. Lai, T. Itoh, and C. Caloz, "Composite Right/ Left-handed Transmission Line metamaterials", IEEE microwave magazine, Vol. 5, No. 3, pp. 34-50, Sep. 2004.
  10. J. Choi, S. Oh, S. Jo, W.-S. Yoon, and J. Lee, "Vertical Split Ring Resonator Using Vias With Wide Bandwidth and Small Electrical Size", IEEE Microwave Wireless Compon. Lett. Vol. 27, No. 1, pp. 16-18, Jan. 2017. https://doi.org/10.1109/LMWC.2016.2629988
  11. R. Grag, I. Bahl, and M. Bozzi, "Microstrip Lines and Slotlined", Norwood, MA, USA: Artech House, 2013.
  12. I. Bahl and P. Bhartia, "Microwave Solid State Circuit Design". New York, NY, USA: Wiley, 1988.

Cited by

  1. Design of Lightweight Acoustic Metastructures Operating at Low Frequency vol.18, pp.4, 2019, https://doi.org/10.14801/jkiit.2020.18.4.59
  2. A Size Reduction Method of Vertical Split Ring Resonator vol.18, pp.9, 2019, https://doi.org/10.14801/jkiit.2020.18.9.51
  3. 다층구조 서브파장 단위 셀로 구성된 메타물질 흡수체 vol.20, pp.5, 2020, https://doi.org/10.7236/jiibc.2020.20.5.31