• Title/Summary/Keyword: hairpin DNA

Search Result 25, Processing Time 0.021 seconds

A Simple and Economical Short-oligonucleotide-based Approach to shRNA Generation

  • Kim, Jin-Su;Kim, Hyuk-Min;Lee, Yoon-Soo;Yang, Kyung-Bae;Byun, Sang-Won;Han, Kyu-Hyung
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.329-334
    • /
    • 2006
  • RNAi (RNA interference) has become a popular means of knocking down a specific gene in vivo. The most common approach involves the use of chemically synthesized short interfering RNAs (siRNAs), which are relatively easy and fast to use, but which are costly and have only transient effects. These limitations can be overcome by using short hairpin RNA (shRNA) expression vectors. However, current methods of generating shRNA expression vectors require either the synthesis of long (50-70 nt) costly oligonucleotides or multi-step processes. To overcome this drawback, we have developed a one-step short-oligonucleotides-based method with preparation costs of only 15% of those of the conventional methods used to obtain essentially the same DNA fragment encoding shRNA. Sequences containing 19 bases homologous to target genes were synthesized as 17- and 31-nt DNA oligonucleotides and used to construct shRNA expression vectors. Using these plasmids, we were able to effectively silence target genes. Because our method relies on the onestep ligation of short oligonucleotides, it is simple, less error-prone, and economical.

Knockdown of UHRF1 by Lentivirus-mediated shRNA Inhibits Ovarian Cancer Cell Growth

  • Yan, Feng;Shao, Li-Jia;Hu, Xiao-Ya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1343-1348
    • /
    • 2015
  • Human UHRF1 (ubiquitin-like PHD and RING finger domain-containing 1) has been reported to be over-expressed in many cancers, but its role in ovarian cancer remains elusive. Here, we determined whether knockdown of UHRF1 by lentivirus-mediated shRNA could inhibit ovarian cancer cell growth. Lentivirus-mediated short hairpin RNAs (lv-shRNAs-UHRF1) were designed to trigger the gene silencing RNA interference (RNAi) pathway. The efficiency of lentivirus-mediated shRNA infection into HO-8910 and HO-8910 PM cells was determined using fluorescence microscopy to observe lentivirus-mediated GFP expression and was confirmed to be over 80 percent. UHRF1 expression in infected HO-8910 and HO-8910 PM was evaluated by real-time PCR and Western blot analysis. The Cell Counting Kit-8 (CCK-8) assay was used to measure cell viability; flow cytometry and Hoechst 33342 assay was applied to measure cell cycle arrest and apoptosis. Cell invasion was assessed using transwell chambers. Our results demonstrated that the loss of UHRF1 promoted HO-8910 and HO-8910 PM cell apoptosis, while inhibiting cell proliferation. In addition, UHRF1 knockdown significantly inhibited the invasion of human ovarian cancer cells. In the present study, we also showed that depleting HO-8910 cells of UHRF1 caused activation of the DNA damage response pathway, with the cell cycle arrested in G2/M-phase. The DNA damage response in cells depleted of UHRF1 was illustrated by phosphorylation of CHK (checkpoint kinase) 2 on Thr68, phosphorylation of CDC25 (cell division control 25) on Ser 216 and phosphorylation of CDK1 (cyclin-dependent kinase 1) on Tyr 15.

Characterization of T7 RNA Polymerase Transcription Elongation Complex in Sequence-specific Transcription Termination (염기서열 특이적 전사종결부위에서 T7 RNA 중합효소 전사연장복합체 특성에 관한 연구)

  • Shin, Ji-Young;Lee, Sang-Soo
    • The Journal of Natural Sciences
    • /
    • v.14 no.1
    • /
    • pp.39-50
    • /
    • 2004
  • T7 RNA polymerase is a single subunit RNA polymerase able to accomplish whole transcription process without auxiliary factors. In order to study transcription elongation mechanism of phage T7 RNA polymerse, stepwise walking of RNA polymerase was established by immobilizing biotinylated DNA template with streptavidin bead, series of active and stable elongation complexes were obtained, Transcripts were radio isotope labeled at the 16thm 17th and 18th nucleotide residues so stable elongation transcription complex of T7 RNA polymerase containing 22-40 nucleotide residues could be identified. We identified the positions of stablely formed transcription elongation complexes of termination site in intrinsic hairpin-independent PTH terminator sequence through the established stepwise walking of wild-type of mutant R173C T7 RNA polymerases. The results suggest that stable elongation transcription complexes were at the site of passing PTH terminator signal by mutant R173C RNA polymerase.

  • PDF

Molecular Biological Studies on Korean Garlic Viruses

  • Choi, Jin-Nam;Song, Jong-Tae;Shin, Chan-Seok;La, Yong-Joon;Lee, Jong-Seob;Choi, Yang-Do
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.86-102
    • /
    • 1994
  • To understand the molecular structure and pathogenesis mechanism of Korean garlic viruses, we have isolate cDNA clones for garlic viruses. The partial nucleotide sequences of 24 cDNA clones were determined and that of six clones containing poly (A) tail were compared with those of other plant viruses. One of those clones, V9 has 81.8% similarity in nucleotide sequence and 93.0% in deduced amino acid sequence, respectively, to the coat protein gene for garlic mosaic virus (GMV). Northern blot analysis with the clone V9 demonstrated that the genome of GMV is 7.8 kb long and has poly (A) tail. The anti-coat protein antibody for GMV recognizes 35 kDa polypeptide which could be the coat protein of GMV from infected garlic leaf extract or virus preparation. Clone G7 has about 62% of deduced amino acid sequence identity with the members of potyvirus group. Northern blot analysis with the clone G7 demonstrated that the genome of the potyvirus I garlic is 9.0 kb long and has poly (A) tail. The third clone, S81, shows 42% amino acid identity to the potexvirus. The other clones are under the characterization. To test the possibility of producing garlic virus resistant plant, we have designed a hairpin type ribozyme to cleave V9 RNA at the middle of the coat protein gene. From the cleavage reactions in vitro with two different sizes of RNA substrates, V9SUB (144 nucleotides) and V9 RNA (1,361 nucleotides), the ribozyme can cleave V9 sequence effectively at the predicted site. To study the activity of the ribozyme in vivo, plant transformation is in progress. Further possibilities to produce garlic virus resistant plant will be discussed.

  • PDF

Transient Expression of Homologous Hairpin RNA Interferes with Broad bean wilt virus 2 Infection in Nicotiana benthamiana

  • Yoon, Ju-Yeon;Ryu, Ki Hyun;Choi, Seung-Kook;Choi, Gug Sun;Kwon, Soon Bae;Park, Jin Woo;Palukaitis, Peter
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.268-276
    • /
    • 2012
  • Broad bean wilt virus 2 (BBWV2), genus Fabavirus, subfamily Comovirinae, family Secoviridae, causes damage in many economically important horticultural and ornamental crops. Sequence alignments showed several conserved sequences in 5' non-coding regions (5' NCRs) of RNA 1 and RNA 2 in all BBWV2 strains characterized so far. Based on this observation, we generated a hpRNA construct (pIR-BBWV2) harboring an inverted repeat containing a 210 bp cDNA fragment homologous to 5' NCR portion of BBWV2 RNA 1 to investigate the silencing potential for its ability to interfere with a rapidly replicating BBWV2. Agrobacterium-mediated transient expression of the IR-BBWV2 had a detrimental effect on BBWV2 infection, showing no distinct symptoms in non-inoculated leaves of the agroinfiltrated Nicotiana benthamiana plants. BBWV2 genomic RNAs were not detected by RT-PCR from tissues of both the inoculated leaves and upper leaves of the agroinfiltrated plants. Accumulation of virus-derived small interfering RNAs was detected in the inoculated leaf tissues of N. benthamiana plants elicited by transient expression of IR-BBWV2 indicating that RNA silencing is responsible for the resistance to BBWV2.