DOI QR코드

DOI QR Code

Transient Expression of Homologous Hairpin RNA Interferes with Broad bean wilt virus 2 Infection in Nicotiana benthamiana

  • Yoon, Ju-Yeon (PVGB, Department of Horticulture and Landscape, College of Natural Science, Seoul Women's University) ;
  • Ryu, Ki Hyun (PVGB, Department of Horticulture and Landscape, College of Natural Science, Seoul Women's University) ;
  • Choi, Seung-Kook (Horticultural & Herbal Environmental Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Choi, Gug Sun (Horticultural & Herbal Environmental Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kwon, Soon Bae (Ganwon Agricultural Research and Extension Services) ;
  • Park, Jin Woo (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Palukaitis, Peter (PVGB, Department of Horticulture and Landscape, College of Natural Science, Seoul Women's University)
  • Received : 2012.10.30
  • Accepted : 2012.11.26
  • Published : 2012.12.31

Abstract

Broad bean wilt virus 2 (BBWV2), genus Fabavirus, subfamily Comovirinae, family Secoviridae, causes damage in many economically important horticultural and ornamental crops. Sequence alignments showed several conserved sequences in 5' non-coding regions (5' NCRs) of RNA 1 and RNA 2 in all BBWV2 strains characterized so far. Based on this observation, we generated a hpRNA construct (pIR-BBWV2) harboring an inverted repeat containing a 210 bp cDNA fragment homologous to 5' NCR portion of BBWV2 RNA 1 to investigate the silencing potential for its ability to interfere with a rapidly replicating BBWV2. Agrobacterium-mediated transient expression of the IR-BBWV2 had a detrimental effect on BBWV2 infection, showing no distinct symptoms in non-inoculated leaves of the agroinfiltrated Nicotiana benthamiana plants. BBWV2 genomic RNAs were not detected by RT-PCR from tissues of both the inoculated leaves and upper leaves of the agroinfiltrated plants. Accumulation of virus-derived small interfering RNAs was detected in the inoculated leaf tissues of N. benthamiana plants elicited by transient expression of IR-BBWV2 indicating that RNA silencing is responsible for the resistance to BBWV2.

Keywords

References

  1. Abhary, M. K., Anfoka, G. H., Nakhla, M. K. and Maxwell, D. P. 2006. Post-transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex. Arch. Virol. 151: 2349-2363. https://doi.org/10.1007/s00705-006-0819-7
  2. Ali, N., Datta, S. K. and Datta, K., 2010. RNA interference in designing transgenic crops. GM Crops 1: 207-213. https://doi.org/10.4161/gmcr.1.4.13344
  3. Allen, R. S., Millgate, A. G., Chitty, J. A., Thisleton, J., Miller, J. A . C., Fist, A. J., Gerlach, W. L. and Larkin, P. J. 2004. RNAi mediated replacement of morphine with the non-narcotic alkaloid reticuline in opium poppy. Nat. Biotechnol. 22: 1559-1566. https://doi.org/10.1038/nbt1033
  4. An, G., 1985. High efficiency transformation of cultured tobacco cells. Plant Physiol. 79: 568-570. https://doi.org/10.1104/pp.79.2.568
  5. Baulcombe, D. 2005. RNA silencing. Trends Biochem. Sci. 30: 290-293. https://doi.org/10.1016/j.tibs.2005.04.012
  6. Bucher, E., Lohuis, D., van Poppel, P. M. J. A., Geerts-Dimitriadou, C., Goldbach, R. and Prins, M. 2006. Multiple virus resistance at a high frequency using a single transgene construct. J. Gen. Virol. 87: 3697-3701. https://doi.org/10.1099/vir.0.82276-0
  7. Canizares, M. C., Taylor, K. M. and Lomonossoff, G. P. 2004. Surface-exposed C-terminal amino acids of the small coat protein of Cowpea mosaic virus are required for suppression of silencing. J. Gen. Virol. 85: 3431-3435. https://doi.org/10.1099/vir.0.80454-0
  8. Canto, T., Cillo, F. and Palukaitis, P. 2002. Generation of siRNA by T-DNA sequences does not require active transcription or homology to sequences in the plant. Mol. Plant Microbe Interact. 15: 1137-1114. https://doi.org/10.1094/MPMI.2002.15.11.1137
  9. Chen, Y.-K., Lohuis, D., Goldbach, R. and Prins, M. 2004. High frequency induction of RNA-mediated resistance against Cucumber mosaic virus using inverted repeat constructs. Mol. Breeding 14: 215-226. https://doi.org/10.1023/B:MOLB.0000047769.82881.f5
  10. Cho, J. D., Kim, J. S., Lee, S. H. and Choi, G. S. 2007. Viruses and symptoms on peppers, and their infection types in Korea. Res. Plant Dis. 13: 75-81. (In Korean) https://doi.org/10.5423/RPD.2007.13.2.075
  11. Choi, G. S., Kim, J. H., Lee, D. H., Kim, J. S. and Ryu, K. H. 2005. Occurrence and distribution of viruses infecting pepper in Korea. Plant Pathology J. 21: 258-261. https://doi.org/10.5423/PPJ.2005.21.3.258
  12. Choi, H. S., Cho, J. D., Lee, K. H. and Kim, J. S. 2001. Broad bean wilt fabavirus and their specific ultrastructures. Korean J. Electron Microsc. 31: 215-222.
  13. Choi, S. K., Palukaitis, P., Min, B. E., Lee, M. Y., Choi, J. K. and Ryu, K. H. 2005. Cucumber mosaic virus 2a polymerase and 3a movement proteins independently affect both virus movement and the timing of symptom development in zucchini squash. J. Gen. Virol. 86: 1213-1222. https://doi.org/10.1099/vir.0.80744-0
  14. Choi, S. K., Yoon, J. Y., Canto, T. and Palukaitis, P. 2011. Replication of cucumber mosaic virus RNA 1 in cis requires functional helicase-like motifs of the 1a protein. Virus Res. 158: 271-276. https://doi.org/10.1016/j.virusres.2011.03.008
  15. Chuang, C.-F. and Meyerowitz, E. M. 2000. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 97: 4985-4990. https://doi.org/10.1073/pnas.060034297
  16. Csorba, T., Pantaleo, V. and Burgyan, J., 2009. RNA silencing: an antiviral mechanism. Adv. Virus Res. 75: 35-71. https://doi.org/10.1016/S0065-3527(09)07502-2
  17. Di Nicola-Negri, E., Brunetti, A., Tavazza, M. and Ilardi, V. 2005. Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Res. 14: 989-994. https://doi.org/10.1007/s11248-005-1773-y
  18. Gavilano, L. B., Coleman, N. P., Burnley, L., Bowman, M., Kalengamaliro, N., Hayes, A., Bush, L. and Siminszky, B. 2006. Genetic engineering of Nicotiana tabacum for reduced nornicotine content. J. Agric. Food. Chem. 54: 9071-9078. https://doi.org/10.1021/jf0610458
  19. Hamilton, A. J. and Baulcombe, D. C. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950-952. https://doi.org/10.1126/science.286.5441.950
  20. Hammond, J., Hsu, H. T., Huang, Q., Jordan, R., Kamo, K. and Pooler, M. 2006. Transgenic approaches to disease resistance in ornamental crops. J. Crop Improv. 17: 155-210. https://doi.org/10.1300/J411v17n01_06
  21. Hull, R. 2002. Mattews' Plant Virology. 4th ed. Academic Press.
  22. Johansen, L. K. and Carrington, J. C. 2001. Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol. 126: 930-938. https://doi.org/10.1104/pp.126.3.930
  23. Kusaba, M., Miyahara, K., Iida, S., Fukuoka, H., Takano, T., Sassa, H., Nishimura, M. and Nishio, T. 2003. Low glutelin content 1: A dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15: 455-467.
  24. Lee, U., Hong, J. S., Choi, J. K., Kim, K. C., Kim, Y. S., Curtis, I. S., Nam, H. G. and Lim, P. O. 2000. Broad bean wilt virus Causes Necrotic Symptoms and Generates Defective RNAs in Capsicum annuum. Phytopathology 90: 1390-1395. https://doi.org/10.1094/PHYTO.2000.90.12.1390
  25. Lennefors, B.-L., Savenkov, E. I., Bensefelt, J., Wremerth-Weich, E., van Roggen, P., Tuvesson, S., Valkonen, J. P. T. and Gielen, J. 2006. dsRNA-mediated resistance to Beet necrotic yellow vein virus infections in sugar beet (Beta vulgaris L. ssp. vulgaris). Mol. Breeding 18: 313-325. https://doi.org/10.1007/s11032-006-9030-5
  26. Lipardi, C., Wei, Q. and Paterson, B. M. 2001. RNAi as random degradative PCR: siRNA primer convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107: 297-307. https://doi.org/10.1016/S0092-8674(01)00537-2
  27. Lisa, V. and Boccardo, G. 1996. Fabaviruses: Broad bean wilt virus and allied viruses. In: Polyhedral virions and bipartite RNA genomes, the plant viruses. eds. by Harrison, B. H. and Murant, A. F., Editors, vol. 5, pp. 229-250. Plenum Press, NY.
  28. Liu, Q., Singh, P. S. and Green, A. G. 2002, High-stearic and higholeic cottonseed oils produced by hairpin RNA-mediated posttranscriptional gene silencing. Plant Physiol. 129: 1732-1743. https://doi.org/10.1104/pp.001933
  29. Llave, C., Kasschau, K. D. and Carrington, J. C. 2000. Virusencoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proc. Natl. Acad. Sci. USA. 97: 13401-13406. https://doi.org/10.1073/pnas.230334397
  30. Meli, V. S., Ghosh, S., Prabha, T. N., Chakraborty, N., Chakraborty, S. and Datta, A. 2010. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. Proc. Natl. Acad. Sci. USA. 107: 2413-2418. https://doi.org/10.1073/pnas.0909329107
  31. Pandolfini, T., Molesini, B., Avesani, L., Spena, A. and Polverari, A. 2003. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection. BMC Biotechnol. 3: 7. https://doi.org/10.1186/1472-6750-3-7
  32. Pooggin, M., Sivaprasad, P. V., Veluthambi, K. and Hohn, T. 2003. RNAi targeting of DNA virus in plants. Nature Biotech. 21: 131-132.
  33. Qi, Y., Zhou, X. and Li, D. 2000. Complete nucleotide sequence and infectious cDNA clone of the RNA1 of a Chinese isolate of Broad bean wilt virus 2. Prog. Nat. Sci. 10: 680-686.
  34. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning. A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
  35. Segal, G., Song, R. and Messing, J. 2003. A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165: 387-397.
  36. Simon-Mateo, C. and Garcia, J. A. 2011. Antiviral strategies in plants based on RNA silencing. Biochim. Biophys. Acta 1809: 722-731. https://doi.org/10.1016/j.bbagrm.2011.05.011
  37. Smith, N. A., Singh, S. P., Wang, M. B., Stoutjesdijk, P. A., Green, A. G. and Waterhouse, P. M. 2000. Total silencing by intronspliced hairpin RNAs. Nature 407: 319-320. https://doi.org/10.1038/35030305
  38. Takahashi, S., Komatsu, K., Kagiada, S., Ozeki, J., Mori, T., Hirata, H., Yamaji, Y., Ugaki, M. and Namba, S. 2006. The efficiency of interference of potato virus X infection depends on the target gene. Virus Res. 116: 214-217. https://doi.org/10.1016/j.virusres.2005.11.002
  39. Tenllado, F., Martinez-Garcia, B., Vargas, M. and Dias-Ruiz, J. R. 2003. Crude extracts of bacterially-expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol. 3: 3. https://doi.org/10.1186/1472-6750-3-3
  40. Tenllado, F., Llave, C. and Diaz-Ruiz, J. R. 2004. RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res. 102: 85-96. https://doi.org/10.1016/j.virusres.2004.01.019
  41. Vanitharani, R., Chellappan, P. and Fauquet, C. M. 2003. Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells. Proc. Natl. Acad. Sci. USA. 100: 9632-9636. https://doi.org/10.1073/pnas.1733874100
  42. Vargas, M., Martinez-Garcia, B., Diaz-Ruiz, J. R. and Tenllado, F. 2008. Transient expression of homologous hairpin RNA interferes with PVY transmission by aphids. Virol. J. 5: 42. https://doi.org/10.1186/1743-422X-5-42
  43. Voinnet, O. 2005. Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet. 6: 206-220. https://doi.org/10.1038/nrg1555
  44. Voinnet, O., Pinto, Y. M. and Baulcombe, D. C. 1999. Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. USA. 96: 14147-14152. https://doi.org/10.1073/pnas.96.24.14147
  45. Wang, M. B., Abbott, D. C. and Waterhouse, P. M. 2000. A single copy of a virus derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol. Plant Pathol. 1: 347-356. https://doi.org/10.1046/j.1364-3703.2000.00038.x
  46. Wang, R. L., Ding, L. W., Sun, Q. Y., Li, J., Xu, Z. F. and Peng, S. L. 2008. Genome sequence and characterization of a new virus infecting Mikania micrantha H. B. K. Arch. Virol. 153: 1765-1770. https://doi.org/10.1007/s00705-008-0180-0
  47. Waterhouse, P. M., Wang, M. B. and Lough, T. 2001. Gene silencing as an adaptive defense against viruses. Nature 411: 834-842. https://doi.org/10.1038/35081168
  48. Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M. B., Rouse, D. T., Liu, Q., Gooding, P. S., Singh, S. P., Abbott. D., Stoutjesdijk, P. A., Robinson, S. P., Gleave, A. P., Green, A. G. and Waterhouse, P. M. 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 6: 581-590.
  49. Xiong, A., Yao, Q., Peng, R., Li, X., Han, P. and Fan, H. 2005. Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Rep. 23: 639-646. https://doi.org/10.1007/s00299-004-0887-7
  50. Xu, Z. G., Cockbain, A. J., Woods, R. D. and Govier, D. A. 1988. The serological relationships and some other properties of isolates of bread bean wilt virus from faba bean and pea in China. Ann. Appl. Biol. 113: 287-296. https://doi.org/10.1111/j.1744-7348.1988.tb03305.x
  51. Yoon, J. Y., Min, B. E., Choi, J. K. and Ryu, K. H. 2002. Genome structure and production of biologically active in vitro transcripts of cucurbit-infecting Zucchini green mottle mosaic virus. Phytopathology 92: 156-163. https://doi.org/10.1094/PHYTO.2002.92.2.156