• Title/Summary/Keyword: hadoop

Search Result 397, Processing Time 0.022 seconds

Development of CEP-based Real Time Analysis System Using Hospital ERP System (병원 ERP시스템을 적용한 CEP 기반 실시간 분석시스템 개발)

  • Kim, Mi-Jin;Yu, Yun-Sik;Seo, Young-Woo;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.290-293
    • /
    • 2015
  • 개개인의 데이터가 비즈니스적으로 중요하지 않을 수 있지만, 대량으로 모으면 그 안에 숨겨진 새로운 정보를 발견할 가능성이 있는 데이터의 집합체로 빅데이터 분석 활용 사례는 점차 늘어나는 추세이다. 빅데이터 분석 기술 중 전통적인 데이터 분석방법인 하둡(Hadoop)은 예전부터 현재에 이르기까지 정형 비정형 빅데이터 분석에 널리 사용되고 있는 기술이다. 하지만 하둡은 배치성 처리 시스템으로 데이터가 많아질수록 응답 지연이 발생할 가능성이 높아, 현재 기업 경영환경과 시장환경에 대한 엄청난 양의 고속 이벤트 데이터에 대한 실시간 분석이 어려운 상황이다. 본 논문에서는 급변하는 비즈니스 환경에 대한 대안으로 오픈소스 CEP(Complex Event Processing)기반 기술을 사용하여 초당 수백에서 수십만건 이상의 이벤트 스트림을 실시간으로 지연 없이 분석가능하게 하는 실시간 분석 시스템을 개발하여 병원 ERP시스템에 적용하였다.

  • PDF

Analyzing Box-Office Hit Factors Using Big Data: Focusing on Korean Films for the Last 5 Years

  • Hwang, Youngmee;Kim, Kwangsun;Kwon, Ohyoung;Moon, Ilyoung;Shin, Gangho;Ham, Jongho;Park, Jintae
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.217-226
    • /
    • 2017
  • Korea has the tenth largest film industry in the world; however, detailed analyses using the factors contributing to successful film commercialization have not been approached. Using big data, this paper analyzed both internal and external factors (including genre, release date, rating, and number of screenings) that contributed to the commercial success of Korea's top 10 ranking films in 2011-2015. The authors developed a WebCrawler to collect text data about each movie, implemented a Hadoop system for data storage, and classified the data using Map Reduce method. The results showed that the characteristic of "release date," followed closely by "rating" and "genre" were the most influential factors of success in the Korean film industry. The analysis in this study is considered groundwork for the development of software that can predict box-office performance.

An Efficient Log Data Processing Architecture for Internet Cloud Environments

  • Kim, Julie;Bahn, Hyokyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.33-41
    • /
    • 2016
  • Big data management is becoming an increasingly important issue in both industry and academia of information science community today. One of the important categories of big data generated from software systems is log data. Log data is generally used for better services in various service providers and can also be used to improve system reliability. In this paper, we propose a novel big data management architecture specialized for log data. The proposed architecture provides a scalable log management system that consists of client and server side modules for efficient handling of log data. To support large and simultaneous log data from multiple clients, we adopt the Hadoop infrastructure in the server-side file system for storing and managing log data efficiently. We implement the proposed architecture to support various client environments and validate the efficiency through measurement studies. The results show that the proposed architecture performs better than the existing logging architecture by 42.8% on average. All components of the proposed architecture are implemented based on open source software and the developed prototypes are now publicly available.

Decombined Distributed Parallel VQ Codebook Generation Based on MapReduce (맵리듀스를 사용한 디컴바인드 분산 VQ 코드북 생성 방법)

  • Lee, Hyunjin
    • Journal of Digital Contents Society
    • /
    • v.15 no.3
    • /
    • pp.365-371
    • /
    • 2014
  • In the era of big data, algorithms for the existing IT environment cannot accept on a distributed architecture such as hadoop. Thus, new distributed algorithms which apply a distributed framework such as MapReduce are needed. Lloyd's algorithm commonly used for vector quantization is developed using MapReduce recently. In this paper, we proposed a decombined distributed VQ codebook generation algorithm based on a distributed VQ codebook generation algorithm using MapReduce to get a result more fast. The result of applying the proposed algorithm to big data showed higher performance than the conventional method.

Development of Hadoop-based Illegal Parking Data Management and Analysis System (하둡 기반 불법 주·정차 데이터 관리 및 분석 시스템 개발)

  • Jang, Jinsoo;Song, Youngho;Baek, Na-Eun;Chang, Jae-Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.167-170
    • /
    • 2017
  • 자동차 보급 증가로 인한 주차 공간 부족 문제는 불법 주정차 차량 발생의 원인이 되어, 교통 체증을 야기하는 심각한 사회문제가 되었다. 따라서 각 지방자치단체에서는 불법 주정차 문제 해결을 위한 법안을 마련하기 위해 노력하고 있으며, 불법 주정차문제를 해결하기 위한 연구가 진행되고 있다. 한편, 정보통신의 발달에 의해 데이터의 양이 매우 빠른 속도로 증가하고 있으며, 아울러 공공 데이터의 양도 매우 빠른 속도로 증가하고 있다. 따라서 공공 빅데이터를 효율적으로 처리하기 위한 연구가 필요하다. 그러나 현재 공공 빅데이터 관리 및 분석을 수행하기 위한 효율적인 시스템을 구축하는 데는 아직 미흡한 실정이다. 따라서 본 논문에서는 불법 주정차 데이터와 같은 공공데이터를 효율적으로 분석하고 효과적인 주 정차 단속을 위한 하둡 기반 불법 주 정차 데이터 관리 및 분석 시스템을 제안한다.

  • PDF

Adaptable I/O System based I/O Reduction for Improving the Performance of HDFS

  • Park, Jung Kyu;Kim, Jaeho;Koo, Sungmin;Baek, Seungjae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.880-888
    • /
    • 2016
  • In this paper, we propose a new HDFS-AIO framework to enhance HDFS with Adaptive I/O System (ADIOS), which supports many different I/O methods and enables applications to select optimal I/O routines for a particular platform without source-code modification and re-compilation. First, we customize ADIOS into a chunk-based storage system so its API semantics can fit the requirement of HDFS easily; then, we utilize Java Native Interface (JNI) to bridge HDFS and the tailored ADIOS. We use different I/O patterns to compare HDFS-AIO and the original HDFS, and the experimental results show the design feasibility and benefits. We also examine the performance of HDFS-AIO using various I/O techniques. There have been many studies that use ADIOS, however our research is expected to help in expanding the function of HDFS.

Implementation of big web logs analyzer in estimating preferences for web contents (웹 컨텐츠 선호도 측정을 위한 대용량 웹로그 분석기 구현)

  • Choi, Eun Jung;Kim, Myuhng Joo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.83-90
    • /
    • 2012
  • With the rapid growth of internet infrastructure, World Wide Web is evolving recently into various services such as cloud computing, social network services. It simply go beyond the sharing of information. It started to provide new services such as E-business, remote control or management, providing virtual services, and recently it is evolving into new services such as cloud computing and social network services. These kinds of communications through World Wide Web have been interested in and have developed user-centric customized services rather than providing provider-centric informations. In these environments, it is very important to check and analyze the user requests to a website. Especially, estimating user preferences is most important. For these reasons, analyzing web logs is being done, however, it has limitations that the most of data to analyze are based on page unit statistics. Therefore, it is not enough to evaluate user preferences only by statistics of specific page. Because recent main contents of web page design are being made of media files such as image files, and of dynamic pages utilizing the techniques of CSS, Div, iFrame etc. In this paper, large log analyzer was designed and executed to analyze web server log to estimate web contents preferences of users. With mapreduce which is based on Hadoop, large logs were analyzed and web contents preferences of media files such as image files, sounds and videos were estimated.

A Hot-Data Replication Scheme Based on Data Access Patterns for Enhancing Processing Speed of MapReduce (맵리듀스의 처리 속도 향상을 위한 데이터 접근 패턴에 따른 핫-데이터 복제 기법)

  • Son, Ingook;Ryu, Eunkyung;Park, Junho;Bok, Kyoungsoo;Yoo, Jaesoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.11-12
    • /
    • 2013
  • 최근 대규모 데이터의 처리와 관리를 위한 분산 저장 및 처리 시스템의 연구 및 활용이 중요해지고 있다. 대표적인 분산 저장 및 처리시스템으로써 하둡(Hadoop)이 널리 활용되고 있다. 하둡 분산 파일 시스템을 기반으로 수행되는 맵-리듀스에서 테스크 할당은 데이터의 로컬리티를 고려하여 최대한 가깝게 할당한다. 하지만 맵-리듀스에서의 데이터 분석 작업에서 작업 형태에 따라 빈번하게 요청되는 데이터가 존재한다. 이러한 경우, 해당 데이터의 낮은 로컬리티로 인해 수행시간 증가 및 데이터 전송의 지연의 문제점을 야기 시킨다. 본 논문에서는 맵-리듀스의 처리 속도 향상을 위한 데이터 접근 패턴에 따른 핫-데이터 복제 기법을 제안한다. 제안하는 기법에서는 데이터 접근 패턴에 따라 높은 접근 빈도를 보이는 핫-데이터에 대한 복제본 최적화 알고리즘을 활용하여 데이터 로컬리티를 향상시키고 결과적으로 작업 수행시간을 감소시킨다. 제안하는 기법은 기존 기법에 비해 모든 노드의 데이터 이동이 감소하여 접근빈도의 분포가 균형적인 것을 확인하였다. 성능평가 결과, 기존 기법에 비해 접근 빈도의 부하가 약 8% 감소하는 것을 확인하였다.

  • PDF

Effective Countermeasure to APT Attacks using Big Data (빅데이터를 이용한 APT 공격 시도에 대한 효과적인 대응 방안)

  • Mun, Hyung-Jin;Choi, Seung-Hyeon;Hwang, Yooncheol
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • Recently, Internet services via various devices including smartphone have become available. Because of the development of ICT, numerous hacking incidents have occurred and most of those attacks turned out to be APT attacks. APT attack means an attack method by which a hacker continues to collect information to achieve his goal, and analyzes the weakness of the target and infects it with malicious code, and being hidden, leaks the data in time. In this paper, we examine the information collection method the APT attackers use to invade the target system in a short time using big data, and we suggest and evaluate the countermeasure to protect against the attack method using big data.

Design and Implementation of a PCR Primer Search System on Cloud Computing Environments (클라우드 컴퓨팅 환경에서 PCR Primer 검색 시스템 설계 및 개발)

  • Park, Junho;Lim, Jongtae;Kim, Dongjoo;Lee, Yunjeong;Ryu, Eunkyung;Ahn, Minje;Cha, Jaehong;Yu, Seok Jong;Yoo, Jaesoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.269-270
    • /
    • 2012
  • 유전자 증폭을 위한 정확한 PCR Primer의 디자인은 핵심적인 기반 기술이다. 기존 연구를 통해 각 유전자별 특이적인 PCR Primer를 디자인할 수 있는 도구가 제안되었으나, 유전체 정보를 활용한 대단위의 디자인작업을 수행하기에는 적합하지 않았다. 본 논문에서는 클라우드 컴퓨팅 환경에서 대규모의 유전체를 대상으로 특이적인 PCR Primer를 디자인하고 검색할 수 있는 시스템을 설계하고 구현한다. 제안하는 시스템은 Hadoop 플랫폼에서의 MapReduce 프레임워크를 기반으로 설계 및 구현하여 유전자 서열검색을 대규모로 수행할 수 있도록 하였다. 5만개의 질의를 이용한 성능 평가 결과, 제안하는 기법은 기존 BLAST를 이용한 검색방법에 비해 약 3배의 성능 향상을 보였다.

  • PDF