Proceedings of the Korean Society of Computer Information Conference
/
2016.01a
/
pp.67-68
/
2016
최근 빅 데이터를 이용한 시스템들이 여러 분야에서 활발히 이용되기 시작하면서 대표적인 빅데이터 저장 및 처리 플랫폼인 하둡(Hadoop)의 기술적 단점을 보완할 수 있는 다양한 분산 시스템 플랫폼이 등장하고 있다. 그 중 아파치 스파크(Apache Spark)는 하둡 플랫폼의 속도저하 단점을 보완하기 위해 인 메모리 처리를 지원하여 대용량 데이터를 효율적으로 처리하는 오픈 소스 분산 데이터 처리 플랫폼이다. 하지만, 아파치 스파크의 작업은 메모리에 의존적이므로 제한된 메모리 환경에서 전체 작업 성능은 급격히 낮아진다. 본 논문에서는 메모리 용량에 따른 아파치 스파크 성능 비교를 통해 아파치 스파크 동작을 위해 필요한 적정 메모리 용량을 확인한다.
Proceedings of the Korean Society of Computer Information Conference
/
2016.01a
/
pp.207-209
/
2016
정보통신기술의 급속한 발전으로 인해 인터넷은 사회 전 분야를 변화시키고 있고 이를 통해 데이터의 양이 증가하면서 의료, 교육, 경영 등 사회 전 분야에서 빅데이터에 관심이 증가하고 있다. 이에 따라 다양한 빅데이터 오픈소스가 생기고 데이터의 크기에 따라 성능을 비교하는 실험이 진행되었다. 본 논문에서는 데이터의 크기가 아니라 데이터를 분류하는 key의 개수에 따라 성능을 비교하고자 한다.
시맨틱 웹 기술은 웹의 초창기부터 다양한 연구와 표준이 개발되었지만 이를 활용한 데이터 서비스 분야는 그 역사에 비해 성공 사례가 부족한 것이 현실이다. 최근 웹 2.0을 시초로 링크드 데이터의 성장, 정부의 개방형 데이터 서비스, 소셜 웹 서비스의 등장으로 인해 웹의 구조적 데이터는 폭발적으로 성장해 왔으며, 대용량 시맨틱 웹 기반 서비스에 대한 요구와 연구가 진행되고 있다. 본 고에서는 킬러 애플리케이션으로서 기존 시맨틱 웹 기반 검색 기술의 문제점들을 알아보고 이를 해결하기 위해 최근 화두로 떠오르는 빅데이터(Big Data) 기술 요소인 하둡(Hadoop) 및 NoSQL을 활용하여 대용량 시맨틱 웹 데이터를 활용한 Daum의 영화/음악/인물 기반 의미 검색 및 의학 LOD를 기반한 검색 서비스 개발 사례를 제시한다. 이를 토대로 이종 모델 데이터간 연결 및 실시간 데이터 리비전 관리 등 한계점들을 살펴보고 향후 대용량 공공 데이터 활용을 위한 방향을 모색해 본다.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.60-62
/
2018
본 논문에서는 리눅스에서 제공하는 성능 분석 도구들을 활용하여 사용자가 원하는 모니터링 매트릭을 동적으로 등록하고 모니터링 할 수 있는 확장 가능한 하둡 응용 모니터링 서비스의 시계열 데이터 관리 방안을 다룬다. 본 논문에서는 이를 위해서 시계열 데이터를 위한 관계형 데이터베이스인 TimeScaleDB를 사용하였으며 동적으로 변경가능한 모니터링 메트릭 데이터가 하이퍼테이블의 관리를 통해서 구조화된 밀집 데이터 형태로 효율적으로 관리될 수 있음을 제시하였다.
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.1102-1105
/
2015
인터넷 발전이 가속화되고 SNS가 보급된 이후 과거와는 비교할 수 없을 정도로 큰 데이터 트래픽이 발생하고 있다. 기존의 DBMS는 이를 효과적으로 처리할 수 없었기 때문에 Hadoop과 같은 NoSQL이 탄생하였고, 최근 NoSQL 및 기존 SQL DBMS의 협업을 통해 유연하고 강력한 데이터 관리를 수행하는 연구가 진행되었다. 효율적인 질의 처리를 위한 대표적인 연구로 SQL 기반 분산 병렬 질의 처리 기법과 Hive등이 존재한다. 그러나 기존의 기법은 분산 병렬 환경을 고려하지 않아 SQL DBMS의 질의 결과를 효율적으로 Hive에 전송하지 못한다. 본 논문에서는 SQL DBMS에서 Hive로의 효율적인 SQL 데이터 이동을 위해 네트워크 비용을 최소화하는 기법을 제안하고, 제안하는 기법의 우수성을 제시한다.
Proceedings of the Korea Information Processing Society Conference
/
2014.04a
/
pp.635-638
/
2014
빅데이터 시대의 대두에 따라 기존의 관계형 데이터베이스로는 처리하기 어려운 형태의 데이터가 발생하였다. 이런 성질의 데이터를 저장, 활용하기 위한 방법으로 Apache 하둡이 널리 사용되고 있다. 기존의 RDBMS 상의 데이터를 하둡 데이터 분석의 원천 데이터로 활용하려고 하는 경우, 혹은 데이터 크기와 복잡도의 증가로 저장방식을 바꿔야 하는 경우 데이터를 HDFS(Hadoop Distributed File System) 으로 전송해야 한다. 본 논문에서는 정형 데이터 수집 모듈인 Sqoop과 Nosqoop4u의 개발을 통하여 데이터 전송 성능을 비교하였다.
Proceedings of the Korea Information Processing Society Conference
/
2019.10a
/
pp.17-18
/
2019
오픈플랫폼 기반 주택시장 분석 플랫폼은 Linux(CentOS) 서버를 운영체제로 주택 분야 빅데이터 수집/가공/분석/예측을 위하여 Hadoop 기반으로 구축한 플랫폼이다. 오픈소스 플랫폼을 기반으로 다양한 대규모 데이터를 분석하고, 미시/거시 모델을 적용하여 그 예측력을 검증하고자 한다. 본 연구에서는 기존 방식으로 분석하던 Windows 기반의 E-Views 거시 분석 모형을 오픈소스 분석 플랫폼을 구축하고 이와 연계하여 결과를 도출하는 방안을 제시하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.1316-1319
/
2015
본 논문에서는 대규모 분산 병렬 컴퓨팅 환경인 하둡 클러스터 시스템을 이용하여, 공간 객체들 간의 위상 관계를 효율적으로 추론하는 대용량 정성 공간 추론기를 제안한다. 본 논문에서 제안하는 공간 추론기는 추론 작업의 순차성과 반복성을 고려하여, 작업들 간의 디스크 입출력을 최소화할 수 있는 인-메모리 기반의 아파치 스파크 프레임워크를 이용하여 개발하였다. 따라서 본 추론기에서는 추론의 대상이 되는 대용량 공간 지식들을 아파치 스파크의 분산 데이터 집합 형태인 PairRDD와 RDD로 변환하고, 이들에 대한 데이터 오퍼레이션들로 추론 작업들을 구현하였다. 또한, 본 추론기에서는 추론 시간의 많은 부분을 차지하는 이행 관계 추론에 필요한 조합표를 효과적으로 축소함으로써, 공간 추론 작업의 성능을 크게 향상시켰다. 대용량의 공간 지식 베이스를 이용한 성능 분석 실험을 통해, 본 논문에서 제안한 정성 공간 추론기의 높은 성능을 확인할 수 있었다.
Seo, Jae Min;Cho, Kyu Nam;Kim, Do Hyung;Jeong, Chang-Sung
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.184-186
/
2015
본 논문에서는 PTAM을 위한 새로운 분산 스트림 프로세싱 시스템을 제안한다. PTAM은 하나의 시스템에서 동작하도록 설계되었다. 이는 PTAM이 가지고 있는 한계점을 말해주는 부분인데, PTAM은 Bundle Adjustment의 계산 부하가 커지는 경우에 map을 구축하는데 있어 많은 시간과 리소스가 필요하다. 이에 하둡을 통해 계산 부하를 분산하고, PE(Processing Element)를 Xeon phi 시스템을 통해 동작되는 시스템을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.1326-1329
/
2015
최근 들어 공간 지식을 활용한 다양한 서비스들이 개발됨에 따라, 공간 객체들 간의 정성적 공간 관계를 표현한 정성 공간 지식의 수요가 크게 늘어나고 있다. 공간 객체 각각의 세부 정보를 담은 대용량의 공간 데이터들은 개방화가 점차 확대되고 있으나, 공간 객체들 간의 정성적 관계를 표현한 정성 공간 지식은 상대적으로 확보하기 어려운 실정이다. 본 논문에서는 하둡 맵리듀스 병렬 분산 컴퓨터 환경을 이용해, 대용량의 공간 데이터로부터 공간 객체들 간의 위상 관계와 방향 관계를 나타내는 정성 공간 지식을 자동으로 추출하는 공간 지식 추출기를 제안한다. 본 논문에서 제안하는 대용량의 공간 지식 추출기는 맵리듀스 프레임워크를 기반으로 R-트리 색인과 범위 질의들을 효과적으로 이용함으로써, 웹 스케일 수준의 정성 공간 지식을 매우 효율적으로 추출해낸다. Open Street Map (OSM) 공개 데이터를 이용한 성능 분석 실험을 통해, 본 논문에서 제안하는 대용량 공간 지식 추출기의 높은 성능을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.