• 제목/요약/키워드: habitability

검색결과 74건 처리시간 0.016초

VSimulators: A New UK-based Immersive Experimental Facility for Studying Occupant Response to Wind-induced Motion of Tall Buildings

  • Antony Darby;James Brownjohn;Erfan Shahabpoor;Kaveh Heshmati
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.347-362
    • /
    • 2022
  • Current vibration serviceability assessment criteria for wind-induced vibrations in tall buildings are based largely on human 'perception' thresholds which are shown not to be directly translatable to human 'acceptability' of vibrations. There is also a considerable debate about both the metrics and criteria for vibration acceptability, such as frequency of occurrence or peak vs mean vibration, and how these might vary with the nature of the vibration. Furthermore, the design criteria are necessarily simplified for ease of application so cannot account for a range of environmental, situational and human factors that may enhance or diminish the impact of vibrations on serviceability. The dual-site VSimulators facility was created specifically to provide an experimental platform to address gaps in understanding of human response to building vibration. This paper considers how VSimulators can be used to inform general design guidance and support design of specific buildings for habitability, in terms of vibration, which allow engineers and clients to make informed decisions with regard to sustainable design, in terms of energy and financial cost. This paper first provides a brief overview of current vibration serviceability assessment guidelines, and the current understanding and limitations of occupants' acceptability of wind-induced motion in tall buildings. It then describes how the dual-site VSimulators facility at the Universities of Bath and Exeter can be used to assess the effects of motion and environment on human comfort, wellbeing and productivity with examples of how the facility capabilities have been used to provide new, human experience based experimental research approaches.

TRAO-TIMES: Investigating Turbulence and Chemistry in Two Star-forming Molecular clouds

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Choi, Yunhee;Evans, Neal J. II;Offner, Stella S.R.;Baek, Giseon;Lee, Yong-Hee;Choi, Minho;Kang, Hyunwoo;Cho, Jungyeon;Lee, Seokho;Tatematsu, Ken'ichi;Heyer, Mark H.;Gaches, Brandt A.L.;Yang, Yao-Lun
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.37.2-37.2
    • /
    • 2021
  • Turbulence produces the density and velocity fluctuations in molecular clouds, and dense regions within the density fluctuation are the birthplace of stars. Also, turbulence can produce non-thermal pressure against gravity. Thus, turbulence plays a crucial roles in controlling star formation. However, despite many years of study, the detailed relation between turbulence and star formation remain poorly understood. As part of the Taeduk Radio Astronomy Observatory (TRAO) Key Science Program (KSP), "mapping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale (TIMES; PI: Jeong-Eun Lee)", we mapped two star-forming molecular clouds, the Orion A and the ρ Ophiuchus molecular clouds, in six molecular lines (13CO 1-0/C18O 1-0, HCN 1-0/HCO+ 1-0, and CS 2-1/N2H+ 1-0) using the TRAO 14-m telescope. We applied the Principal Component Analysis (PCA) to the observed data in two different ways. The first method is analyzing the variation of line intensities in velocity space to evaluate the velocity power spectrum of underlying turbulence. We investigated the relation between the star formation activities and properties of turbulence. The other method is analyzing the variation of the integrated intensities between the molecular lines to find the characteristic correlation between them. We found that the HCN, HCO+, and CS lines well correlate with each other in the integral shaped filament in the Orion A cloud, while the HCO+ line is anti-correlate with the HCN and CS lines in L1688 of the Ophiuchus cloud.

  • PDF

Space Planning Guidelines for the Installation of Multi-purpose Convergence Facilities in Universities as Regional Research Facilities - Focused on the Analysis of Domestic and Foreign Cases -

  • Kim, Hyeong-Eon
    • 한국농촌건축학회논문집
    • /
    • 제26권3호
    • /
    • pp.37-44
    • /
    • 2024
  • Currently, convergence research is being conducted in various research facilities in Korea, but it is true that there are very few multi-purpose convergence research facilities that can support such convergence research in universities, which are the most basic research group. In the case of multi-purpose convergence research facilities installed in universities, human resources from more diverse fields gather to conduct various studies than general research facilities, so the facilities should be planned to reflect these characteristics, and the space should be planned to promote human exchanges. The basic guidelines for planning multipurpose convergence research facilities installed in universities are as follows. First, multi-purpose convergence facilities in universities should be based on the habitability and convenience of users who use the facilities, and functionality, promotion of human resource exchange, symbolism, and eco-friendliness should be set as major planning factors. Second, in the case of internal planning, it is necessary to secure a efficient research and public space, a short and clear movement and evacuation plan, a future-oriented image and symbolism, an eco-friendly facility plan, efficiency through zoning and modularization, and future expansion. Third, in the case of size setting, it is appropriate to plan around 18,000m2 of total floor area, and considered safe to plan around 45% of research & education area, 6% of support area, 5% of convenience area, 4% of exhibition area, and 40% of public areas by use, but additional reviews should be conducted according to the situation of each university or local region.

재난대응 구호주거 성능지표 개발을 위한 기초연구 (A Basic Study of Development of Post-disaster Refugees Housing Performance Index)

  • 남혜령;이원학;강수민;김성태;조영준;이병연
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.744-754
    • /
    • 2017
  • 본 연구는 구호주거 성능 기준 및 개발의 기반을 다지기 위해 구호주거 성능지표 체계를 개발하고 지표의 도입 방안을 제시하는 것을 목표로 전문가 설문을 통한 계층적 분석 기법(Analytic Hierarchy Process)을 진행하였다. 구호주거 성능지표 체계를 구축하기 위하여 구호주거를 항구적 주택이 마련되기 전까지 일정 기간 사용되는 중장기 임시 거주 시설로 정의하고 안전성, 신속성, 재사용성, 거주성, 경제성을 주요 성능 요소로 도출하였고, 주요 성능 요소와 건축물의 전 생애주기를 연계하여 계층화된 성능지표 체계를 구축하였다. 개발된 구호주거 성능지표 체계의 항목별 중요도를 계층적 분석 기법에 따라 정량적으로 도출하였다. 마지막으로, 중요도 분석 결과를 바탕으로 종합 가중치 1-10 순위의 성능 기준과 각 범주별 1 순위의 성능 기준인 총 14 개의 성능 기준을 필수 성능 기준(반드시 충족), 그 외는 권장 성능 기준(선택적 충족)으로 분류하여 구호주거 개발의 모든 단계를 고려한 성능지표를 구축하였다. 추후 구호주거 성능지표의 완성으로 재난에 의해 발생하는 이재민의 안정적인 거주 보장과 빠른 일상복귀를 도모할 수 있을 것으로 기대된다.