• Title/Summary/Keyword: hFOB1

Search Result 24, Processing Time 0.027 seconds

Effects of Nicotine on mineralization in human fetal osteoblasts (니코틴이 사람태아골모세포의 광물화 과정에 미치는 영향)

  • Lim, Sung-Woo;Han, Sang-Heon;Lee, Seong-Jin;You, Suk-Joo;Shin, Hyung-Shik;You, Hyung-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.729-738
    • /
    • 2003
  • Nicotine is one of the major components of cigarette smoking which causes various systemic and local diseases to human body. The purpose of the present study was to investigate the effects of nicotine on bone mineralization in human fetal osteoblasts cell line(hFOB1). To compare the alkaline ph-osphatase(ALP) synthesis, hFOBl were cultured with DMEM/F-12 1:1 Mixture and 100 pg/ml, 1 ng/ml, 10 ng/ml, 100 ng/ml, 1 ${\mu}g$/ml, 10 ${\mu}g$/ml, 100 ${\mu}g$/ml of nicotine. And to compare the calcium accumulation, hFOB1 cultured for 23 days were quantified and photographed. ALP activity of hFOB1 exposed to nicotine was not significantly changed at a lower concentrations of nicotine, but was significantly decreased at a higher concentrations (10 ${\mu}g$/ml, 100 ${\mu}g$/ml) of nicotine (p<0.05). A quantified calcium acculation in hFOB1 was significantly decreased at 1,10, and 100${\mu}g$/ml of nicotine (p<0.05). Significantly decreased calcium deposition was observed at 1, 10, and 100${\mu}$/ml of nicotine. These results indicate that a higher concentration of nicotine show a negative effects on mineralization of hFOB1.

Study on the Biological Characteristics of Cultured Osteoblasts Derived from Alveolar Bone (배양 치조골모세포의 생물학적 특성에 관한 연구)

  • Lee, Yong-Bae;Lee, Seong-Jin;You, Suk-Joo;Kim, Seong-Yun;Sin, Gye-Cheol;Kim, Hyun-A;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.317-332
    • /
    • 2004
  • Osteoblasts from alveolar bone may have an important role in the bone regeneration for periodontium, but their culture and characterization are not determined yet. The purpose of this study was to investigate the biological characteristics of primary explant cultured osteoblasts(PECO) from alveolar bone. Osteoblasts were isolated and cultured from alveolar socket of extracted tooth in children. To compare the characteristics, osteoblasts and gingival fibroblasts were cultured with DMEM at $37^{\circ}C$, 5% $CO_2$, l00% humidity incubator, and human fetal osteoblasts cell line(hFOB1) were cultured with DMEM at $34^{\circ}C$, 5%, $CO_2$ 100% humidity incubator. To characterize the isolated bone cells, morphologic change, cell proliferation and differentiation were measured. Morphology of PECO was small round body or cuboidal shape on inverted microscope and was similar with hFOB1. PECO became polygonal shape with stellate and had an amorphous shape at 9th passage in culture. PECO had significantly higher activity than that of gingival fibroblasts and hFOB1 in alkaline phosphatase activity. The expression of osteocalcin and bone sialoprotein in PECO was notably increased when compared with hFOB1 and gingival fibroblasts. These result indicated that PECO from alveolar bone in children has an obvious characteristics of osteoblast, maybe applied for the regeneration of bone.

Effects of Dichloromethane Fraction of Phlomidis Radix on Bone Formation in Human Fetal Osteoblasts (속단의 dichloromethane 분획물이 태아골모세포의 골형성 유도에 미치는 효과)

  • Lee, Young-Joon;Choi, Hee-In;Kim, Yun-Chul;Shin, Hyung-Shik;You, Hyung-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.2
    • /
    • pp.259-269
    • /
    • 2003
  • The ideal goal of periodontal therapy is the regeneration of periodontal tissue repair of function. Although is very difficult to attain the goal, recent advances in periodontal wound healing concepts encourage hope reaching it. Recently many efforts are concentrated on the regeneration potential of material used in traditional Korean medicine. Phlomidis Radix has been used for the treatment of blood stasis, bone fracture and osteoporosis in traditional Korean medicine. The purpose of this study is to examine effects of dichloromethane fraction Phlomidis Radix on Bone Formation in Human Fetal Osteoblasts. Human fetal osteoblastic cell line(hFOB1 1.19 ;American Type Culture Collection, Manassas, VA) were used and cells were cultured containing DMEM and dichloromethane fraction Phlomidis Radix(100 ng/ml , 1 ${\mu}$/ml, 10 ${\mu}$/ml) at 34$^{\circ}C$ with 5% $CO_2$ in 100% humidity. MTT was performed to examine the viability of the cell, and alkaline phosphatase activity was analyzed to examine the mineralization. Also bone calcification nodules were evaluated. The cellular activity of hFOB1 was increased in 100 ng/ml, 1 ${\mu}$/ml , 10 ${\mu}$/ml of dichloromethane fraction of Phlomidis Radix and especially significant increation was showed in 100 ng/ml of dichloromethane fraction of Phlomidis Radix at 6days (p <0.05). ALP level of hFOB1 was significantly increased in 100 ng/ml , 1 ${\mu}$/ml, 10 ${\mu}$/ml of dichloromethane fraction of Phlomidis Radix and especially more increation was showed in 10 ${\mu}$/ml of dichloromethane fraction of Phlomidis Radix (p <0,05). Calcification nodules of hFOB1 significantly increased in 10 ${\mu]$/ml of dichloromethane fraction of Phlomidis Radix at 21 days of incubation(p<0.05). The results indicate that dicholoromethane fraction of Phlomidis Radix has excellent effects on mineralization of hFOB1.

Inhibitory Effects of Angiotensin Converting Enzyme and α-Glucosidase, and Alcohol Metabolizing Activity of Fermented Omija (Schizandra chinensis Baillon) Beverage (오미자 발효음료의 알코올 분해능과 Angiotensin Converting Enzyme 및 α-Glucosidase 저해효과)

  • Cho, Eun-Kyung;Cho, Hea-Eun;Choi, Young-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.5
    • /
    • pp.655-661
    • /
    • 2010
  • The nutraceutical role of fermented omija (Schizandra chinensis) beverage (FOB) was determined through the analysis of fibrinolytic and alcohol metabolizing activities, nitrite scavenging activity, and angiotensin converting enzyme and $\alpha$-glucosidase inhibitory effects. Firstly, FOB increased fibrinolytic activity in a dose-dependent manner and indicated angiotensin converting enzyme inhibitory activity of 94.8% at 20% FOB (0.6 mg/mL). In addition, the inhibitory activities of FOB on $\alpha$-amylase and $\alpha$-glucosidase were determined to be 100% at 100% FOB (3 mg/mL) and 49% at 60% FOB (1.8 mg/mL), respectively. Nitrite scavenging activity of FOB was about 96.1%, 72.3%, and 68.3% on pH 1.2, 3.0, and 6.0 at 100% FOB, respectively. To determine influence of FOB on alcohol metabolism, the generating activities of reduced-nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) were measured. Facilitating rate of ADH activity was 70.3% at 50% FOB, but ALDH activity was not affected. These results revealed that FOB has a strong alcohol metabolizing activity, and fibrinolytic and nitrite scavenging activities and exhibits the angiotensin converting enzyme, $\alpha$-amylase, and $\alpha$-glucosidase inhibitory activities.

Effects of Irradiated Frozen Allogenic Bone and Musculoskeletal Transplant Foundation on Bone Formation in Human Fetal Osteoblasts (사람 태아 골모 세포에 대한 냉동 동종골과 근골격이식재의 골형성 유도에 관한 효과)

  • Yoon, Ho-Sang;Pi, Sung-Hee;Yun, Hyeong-Geun
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.435-448
    • /
    • 2006
  • The purpose of this study was to investigate the effects of ICB(Irradiated frozen allogenic bone, Rocky Mountain Tissue Bank, USA) and MTF(Decalcified freeze-dried bone allograft, Musculoskeletal Transplant Foundation, USA) on the cell proliferation and differentiation of human fetal osteoblasts. Human fetal osteoblasts (hFOB1) were cultured with $10\;ng/m{\ell}$of ICB and MTF. The negatvie control group was cultured with DMSO and positive control group was cultured with BMF ($2\;ng/m{\ell}$). MIT was performed to examine the viability of the cell, and alkaline phosphatase activity was analyzed to examine the mineralization. Calcium accumulation was also evaluated. ICB and MTF did not increase the rate of the cellular proliferation of hFOB1s while they enhanced ALP and calcium accumulation. The expression of osteocalcin (OC) and bone silaloprotein (BSP) increased in hFOB1 treated with ICB and MTF ($10\;ng/m{\ell}$). These results suggest that ICB and MTF stimulate osteoblastic activity of the hFOBl.

Effects of Several Natural Medicines on Alkaline Phosphatase Activity in hFOB1 (수종의 생약제제가 hFOB1의 염기성 인산분해 효소 활성에 미치는 영향)

  • Jang Kil Young;Hyun Ha Na;Kim Yun Sang;You Hyung Keun;Shin Hyung Shik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.1042-1047
    • /
    • 2002
  • Recently, many natural medicines, which have advantage of less side effects and possibility of long-term use, have been studied for their capacity and effects of anti-bacterial, anti-inflammatory and regenerative potential for periodontal tissues. Cortex Eucommiae, Eupoly phaga, Semen Cuscutae, Halloysitum Rubrum have been traditionally used as medicines for treatment of bone disease in Korea. The objective of the present study is to examine the ability of alkaline phosphatase (ALP) activity in human fetal osteoblast cell line (hFOB1) with several natural medicines. hFOB1 added DMEM/F-12 were cultured with dexamethasone as a positive control, and with each natural medicine. ALP activity was measured by spectrophotometer for enzyme activity and naphthol AS-Bl staining was performed for morphometry. All of the natural medicines induced a higher ALP activity compared to negative control, especially, Cortex Eucommiae increased an ALP activity in all experimental groups (p<0.05). In naphthol AS-Bl staining, all of the natural medicines of this study increased the stained area compared to negative control. Especially, Cortex Eucommiae and Eupoly phaga showed statistical significance compared to negative control (p<0.05). These results indicate that Cortex Eucommiae, Eupoly phaga, Semen Cuscutae, Halloysitum Rubrum have an inducing ability of ALP synthesis on osteoblasts.

Protective effects of remifentanil against H2O2-induced oxidative stress in human osteoblasts

  • Yoon, Ji-Young;Kim, Do-Wan;Kim, Eun-Jung;Park, Bong-Soo;Yoon, Ji-Uk;Kim, Hyung-Joon;Park, Jeong-Hoon
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.4
    • /
    • pp.263-271
    • /
    • 2016
  • Background: Bone injury is common in many clinical situations, such as surgery or trauma. During surgery, excessive reactive oxygen species (ROS) production decreases the quality and quantity of osteoblasts. Remifentanil decreases ROS production, reducing oxidative stress and the inflammatory response. We investigated remifentanil's protective effects against $H_2O_2$-induced oxidative stress in osteoblasts. Methods: To investigate the effect of remifentanil on human fetal osteoblast (hFOB) cells, the cells were incubated with 1 ng/ml of remifentanil for 2 h before exposure to $H_2O_2$. For induction of oxidative stress, hFOB cells were then treated with $200{\mu}M$ $H_2O_2$ for 2 h. To evaluate the effect on autophagy, a separate group of cells were incubated with 1 mM 3-methyladenine (3-MA) before treatment with remifentanil and $H_2O_2$. Cell viability and apoptotic cell death were determined via MTT assay and Hoechst staining, respectively. Mineralized matrix formation was visualized using alizarin red S staining. Western blot analysis was used to determine the expression levels of bone-related genes. Results: Cell viability and mineralized matrix formation increased on remifentanil pretreatment before exposure to $H_2O_2$-induced oxidative stress. As determined via western blot analysis, remifentanil pretreatment increased the expression of bone-related genes (Col I, BMP-2, osterix, and $TGF-{\beta}$). However, pretreatment with 3-MA before exposure to remifentanil and $H_2O_2$ inhibited remifentanil's protective effects on hFOB cells during oxidative stress. Conclusions: We showed that remifentanil prevents oxidative damage in hFOB cells via a mechanism that may be highly related to autophagy. Further clinical studies are required to investigate its potential as a therapeutic agent.

Effects of Several Herbal Medicines on Alkaline Phosphatase Activity in Human Fetal Osteoblasts (수종의 생약제제가 human fetal osteoblasts의 염기성 인산분해 효소 활성에 미치는 영향)

  • Lee, Myoung-Ku;Choi, Hee-In;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.1
    • /
    • pp.49-60
    • /
    • 2003
  • Several growth factors and polypeptides are not commonly yet used for regenerators of bone tissue or alveolar bone because of the insufficiency of studies on their side effects, genetic engineering for mass production and stability for clinical application. Recently, many herbal medicines, which have advantage of less side effects and possibility of long-term use, have been studied for their capacity and effects of anti-bacterial, antiinflammatory and regenerative potential of periodontal tissues. Morindae Radix, Cibotium Barometz (L.), Albizziae Cortex, Cistandhis Herba have been traditionally used as medicines for treatment of bone disease in Eastern medicine. The objective of the present study is to examine the ability of alkaline phosphatase (ALP) activity of human fetal osteoblast (hFOB1) when several natural medicines were supplemented. hFOB1 were cultured with Dulbecuo's Modified Eagle's Medium Nutrient Mixture F-12 HAM ( DMEM/F-12 1:1 Mixture, Sigma, USA) and negative control, dexamethasone (positive control), and each natural medicines for 3 days. And then ALP activity was measured by spectrophotometer for enzyme activity and Alizarin red S staining for morphometry. Among the natural medicines of this study, Morindae Radix, Cibotium Barometz (L.) and Cistanchis Herba induced higher activity of ALP synthesis than negative controls in all experimental group. Albizziae Cortex showed mild increases than negative control group. According to measurement of positively stained area, all of the natural medicines of this study increased compared to negative control. Especially, Cibotium Barometz (L.) and Cistanchis Herba showed statistical significance compared to negative control (p<0.05). These results indicate that Morindae Radix, Cibotium Barometz (L.), Albizziae Cortex, Cistandhis Herba have an inducing ability of ALP synthesis on osteoblast.

Cytological Study on the Cause of the Osteoporotic Side Effects of Adefovir Dipivoxil (아데포비어의 부작용인 골다공증 원인 규명을 위한 세포학적 연구)

  • Park, Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.379-385
    • /
    • 2019
  • Osteoporosis is a disease that increases the risk of fractures by inducing a decrease in bone strength by the changes in hormones and a decrease in minerals. Recent reports have indicated that the long-term administration of Adefovir dipivoxil (ADV), which is used as a treatment for the hepatitis virus and AIDS, may have osteoporotic side effects. On the other hand, there are few studies on the cytopathic correlation of these causes. In this study, the biological relevance of ADV was evaluated using osteoblast hFOB1.19 and vascular endothelial cell HUVEC. First, the cells were treated with ADV at different concentrations, and DAPI and crystal violet staining were performed for morphological analysis of each cell and nucleus. A CCK-8 assay, real-time PCR, alkaline phosphatase (ALP) staining, and activity was performed to evaluate the drug effects on cell proliferation, gene expression, and osteoblast differentiation. As a result, ADV induced cell hypertrophy in hFOB1.19 cells and HUVEC cells. Furthermore, ADV not only inhibited cell proliferation and TGF-${\beta}$ expression but was also involved in osteoblast differentiation. Overall, these results provide basic data to help better understand the mechanism of ADV-induced osteoporosis and its clinical implications.