DOI QR코드

DOI QR Code

Cytological Study on the Cause of the Osteoporotic Side Effects of Adefovir Dipivoxil

아데포비어의 부작용인 골다공증 원인 규명을 위한 세포학적 연구

  • Park, Ho (Department of Clinical Laboratory Science, Wonkwang Health Science University)
  • 박호 (원광보건대학교 임상병리학과)
  • Received : 2019.05.08
  • Accepted : 2019.06.11
  • Published : 2019.09.30

Abstract

Osteoporosis is a disease that increases the risk of fractures by inducing a decrease in bone strength by the changes in hormones and a decrease in minerals. Recent reports have indicated that the long-term administration of Adefovir dipivoxil (ADV), which is used as a treatment for the hepatitis virus and AIDS, may have osteoporotic side effects. On the other hand, there are few studies on the cytopathic correlation of these causes. In this study, the biological relevance of ADV was evaluated using osteoblast hFOB1.19 and vascular endothelial cell HUVEC. First, the cells were treated with ADV at different concentrations, and DAPI and crystal violet staining were performed for morphological analysis of each cell and nucleus. A CCK-8 assay, real-time PCR, alkaline phosphatase (ALP) staining, and activity was performed to evaluate the drug effects on cell proliferation, gene expression, and osteoblast differentiation. As a result, ADV induced cell hypertrophy in hFOB1.19 cells and HUVEC cells. Furthermore, ADV not only inhibited cell proliferation and TGF-${\beta}$ expression but was also involved in osteoblast differentiation. Overall, these results provide basic data to help better understand the mechanism of ADV-induced osteoporosis and its clinical implications.

골다공증은 호르몬의 변화와 무기질 감소에 의해 골밀도의 감소를 유발하여 골절의 위험을 높이는 질환이다. 최근 보고에 의하면, 간염바이러스 및 에이즈 치료제로 사용되고 있는 Adefovir dipivoxil (ADV)의 장기적 복용에서 골다공증 부작용이 유발할 수 있음이 보고 되고 있다. 이에 대한 연구수행을 위해 골모세포주 hFOB1.19와 혈관내피세포 HUVEC을 이용하여 ADV에 대한 생물학적 연관성을 평가하였다. 우선적으로 ADV를 농도별로 처리한 후 각 세포와 핵의 형태학적 분석을 위해 DAPI와 crystal violet 염색을 시행하였다. 또한 세포 증식에 대한 약물 효과를 평가하기 위하여 CCK-8분석과 골모세포에 대한 분화유도 및 억제 효과를 확인하기 위하여, ALP 염색을 진행하였다. 그 결과, ADV는 hFOB1.19 세포와 HUVEC 세포에서 농도 의존적으로 세포의 비대 현상을 유발하였고, 세포의 증식이 억제되었다. 이러한 원인들을 규명하기 위해 TGF-${\beta}$발현을 조사하였을 뿐만 아니라 이러한 발현 감소에 의한 생물학적 영향이 골모세포로부터 골세포로의 분화 과정에 관여하고 있음을 확인 할 수 있었다. 결론적으로, 본 연구에서는 ADV 약물이 골모세포와 혈관내피세포의 TGF-${\beta}$의 발현을 억제하여 핵의 크기 증가와 세포형태의 비대증을 유발하며, 세포의 증식억제 및 골모세포 분화능에 영향을 줌으로서 골다공증을 유발할 수 있는 가능성을 확인하였다. 이러한 결과는 ADV 복용에 따른 골다공증 발병 원인을 이해하기 위한 기초 연구 및 이를 이용한 임상영역에 활용 될 수 있을 것으로 사료된다.

Keywords

References

  1. McKenna MJ, Frame B. Hormonal influences on osteoporosis. Am J Med. 1987;82:61-67. https://doi.org/10.1016/0002-9343(87)90273-7
  2. Kurra S, Siris E. Diabetes and bone health: the relationship between diabetes and osteoporosis-associated fractures. Diabetes Metab Res Rev. 2011;27:430-435. https://doi.org/10.1002/dmrr.1197
  3. Schipper LG, Fleuren HW, van den Bergh JP, Meinardi JR, Veldman BA, Kramers C. Treatment of osteoporosis in renal insufficiency. Clin Rheumatol. 2015;34:1341-1345. https://doi.org/10.1007/s10067-015-2883-4
  4. Drake MT. Osteoporosis and Cancer. Curr Osteoporos Rep. 2013;11:163-170. https://doi.org/10.1007/s11914-013-0154-3
  5. Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci. 2002;966:73-81. https://doi.org/10.1111/j.1749-6632.2002.tb04204.x
  6. Kwon SY, Ahn SY, Ko SY, Jang YM, Choi YH, Kim BK, et al. A case of osteomalacia related to adefovir in a patient with chronic hepatitis B. Korean J Gastroenterol. 2010;56:117-120. https://doi.org/10.4166/kjg.2010.56.2.117
  7. Jeong HY, Lee JM, Lee TH, Lee JY, Kim HB, Heo MH, et al. Two cases of hypophosphatemic osteomalacia after long-term low dose adefovir therapy in chronic hepatitis B and literature review. J Bone Metab. 2014;21:76-83. https://doi.org/10.11005/jbm.2014.21.1.76
  8. Kramata P, Votruba I, Otova B, Holy A. Different inhibitory potencies of acyclic phosphonomethoxyalkyl nucleotide analogs toward DNA polymerases alpha, delta and epsilon. Mol Pharmacol. 1996;49:1005-1011.
  9. Romaniuk PJ, Eckstein F. A study of the mechanism of T4 DNA polymerase with diastereomeric phosphorothioate analogues of deoxyadenosine triphosphate. J Biol Chem. 1982;257:7684-7688. https://doi.org/10.1016/S0021-9258(18)34435-1
  10. Nakashima K, Nakashima H, Shimoyama M. Deoxyadenosine triphosphate acting as an energy-transferring molecule in adenosine deaminase inhibited human erythrocytes. Biochim Biophys Acta. 1991;1094:257-262. https://doi.org/10.1016/0167-4889(91)90084-B
  11. Marcellin P, Chang TT, Lim SG, Tong MJ, Sievert W, Shiffman ML, et al. Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. N Engl J Med. 2003;348:808-816. https://doi.org/10.1056/NEJMoa020681
  12. ADHOC International Steering Committee. A randomized placebo-controlled trial of adefovir dipivoxil in advanced HIV infection: the ADHOC trial. HIV Med. 2002;3:229-238. https://doi.org/10.1046/j.1468-1293.2002.00111.x
  13. Fisher EJ, Chaloner K, Cohn DL, Grant LB, Alston B, Brosgart CL, et al. The safety and efficacy of adefovir dipivoxil in patients with advanced HIV disease: a randomized, placebo-controlled trial. AIDS. 2001;15:1695-1700. https://doi.org/10.1097/00002030-200109070-00013
  14. Kahn J, Lagakos S, Wulfsohn M, Cherng D, Miller M, Cherrington J, et al. Efficacy and safety of adefovir dipivoxil with antiretroviral therapy: a randomized controlled trial. JAMA. 1999;282:2305-2312. https://doi.org/10.1001/jama.282.24.2305
  15. Eguchi H, Tsuruta M, Tani J, Kuwahara R, Hiromatsu Y. Hypophosphatemic osteomalacia due to drug-induced Fanconi's syndrome associated with adefovir dipivoxil treatment for hepatitis B. Intern Med. 2014;53:233-237. https://doi.org/10.2169/internalmedicine.53.1213
  16. Girgis CM, Wong T, Ngu MC, Emmett L, Archer KA, Chen RC, et al. Hypophosphataemic osteomalacia in patients on adefovir dipivoxil. J Clin Gastroenterol. 2011;45:468-473. https://doi.org/10.1097/MCG.0b013e3181e12ed3
  17. Yang X, Chen L, Xu X, Li C, Huang C, Deng CX. TGF-${\beta}$/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol. 2001;153:35-46. https://doi.org/10.1083/jcb.153.1.35
  18. Owens GK, Geisterfer AA, Yang YW, Komoriya A. Transforming growth factor-beta-induced growth inhibition and cellular hypertrophy in cultured vascular smooth muscle cells. J Cell Biol. 1988;107:771-780. https://doi.org/10.1083/jcb.107.2.771
  19. Zhuang H, Wang W, Tahernia AD, Levitz CL, Luchetti WT, Brighton CT. Mechanical strain-induced proliferation of osteoblastic cells parallels increased TGF-${\beta}$ 1 mRNA. Biochem Biophys Res Commun. 1996;229:449-453. https://doi.org/10.1006/bbrc.1996.1824
  20. Liu Z, Li C, Kang N, Malhi H, Shah VH, Maiers JL. Transforming growth factor ${\beta}$ ($TGF{\beta}$) cross-talk with the unfolded protein response is critical for hepatic stellate cell activation. J Biol Chem. 2019;294:3137-3151. https://doi.org/10.1074/jbc.RA118.005761
  21. Bostrom P, Mann N, Wu J, Quintero PA, Plovie ER, Panakova D, Gupta RK, et al. $C/EBP{\beta}$ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell. 2010;143:1072-1083. https://doi.org/10.1016/j.cell.2010.11.036
  22. Hirata M, Kugimiya F, Fukai A, Ohba S, Kawamura N, Ogasawara T, et al. $C/EBP{\beta}$ promotes transition from Proliferation to hypertrophic differentiation of chondrocytes through transactivation of $p57^{Kip2}$. PLoS One. 2009;4:E4543. https://doi.org/10.1371/journal.pone.0004543
  23. Zou J, Li H, Chen X, Zeng S, Ye J, Zhou C, et al. $C/EBP{\beta}$ knockdown protects cardiomyocytes from hypertrophy via inhibition of $p65-NF{\kappa}B$. Mol Cell Endocrinol. 2014;390:18-25. https://doi.org/10.1016/j.mce.2014.03.007
  24. Wu L, Derynck R. Essential role of TGF-${\beta}$ signaling in glucose-induced cell hypertrophy. Dev Cell. 2009;17:35-48. https://doi.org/10.1016/j.devcel.2009.05.010
  25. Izzedine H, Launay-Vacher V, Deray G. Antiviral durg-induced nephrotoxicity, Am J Kidney Dis. 2005;45:804-817. https://doi.org/10.1053/j.ajkd.2005.02.010
  26. Zhang X, Wang R, Piotrowski M, Zhang H, Leach KL. Intracellular concentrations determine the cytotoxicity of adefovir, cidofovir and tenofovir. Toxicol In Vitro. 2015;29:251-258. https://doi.org/10.1016/j.tiv.2014.10.019
  27. Balogh E, Paragh G, Jeney V. Influence of iron on bone homeostasis. Pharmaceuticals. 2018;11:E107. https://doi.org/10.3390/ph11040107
  28. Wu M, Chen G, Li YP. TGF-${\beta}$ and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4:16009. https://doi.org/10.1038/boneres.2016.9
  29. Jones E, Mazirka P, McNurlan MA, Darras F, Gelato MC, Caso G. Highly active antiretroviral therapy dysregulates proliferation and differentiation of human pre-adipocytes. World J Virol. 2017;6:53-58. https://doi.org/10.5501/wjv.v6.i3.53
  30. Xu P, Wang Y, Qin Z, Qiu L, Zhang M, Huang Y, et al. Combined medication of antiretroviral drugs tenofovir disoproxil fumarate, emtricitabine, and raltegravir reduces neural progenitor cell proliferation in vivo and in vitro. J Neuroimmune Pharmacol. 2017;12:682-692. https://doi.org/10.1007/s11481-017-9755-4