• Title/Summary/Keyword: hERG $K^+$ channel

Search Result 15, Processing Time 0.039 seconds

Inhibitory Effect of Nicardipine on hERG Channel

  • Chung, Eun-Yong;Cho, Hea-Young;Cha, Ji-Hun;Kwon, Kyoung-Jin;Jeon, Seol-Hee;Jo, Su-Hyun;Kim, Eun-Jung;Kim, Hye-Soo;Chung, Hye-Ju
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.448-453
    • /
    • 2010
  • Drug-induced long QT syndrome is known to be associated with the onset of torsades de pointes (TdP), resulting in a fatal ventricular arrhythmia. QT interval prolongation can result from blocking the human ether-a-go-go-related gene (hERG) channel, which is important for the repolarization of cardiac action potential. Nicardipine, a Ca-channel blocker and antihypertensive agent, has been reported to increase the risk of occasional serious ventricular arrhythmias. We studied the effects of nicardipine on hERG $K^+$ channels expressed in HEK293 cells and Xenopus oocytes. The cardiac electrophysiological effect of nicardipine was also investigated in this study. Our results revealed that nicardipine dose-dependently decreased the tail current of the hERG channel expressed in HEK293 cells with an $IC_{50}$ of 0.43 ${\mu}M$. On the other hand, nicardipine did not affect hERG channel trafficking. Taken together, nicardipine inhibits the hERG channel by the mechanism of short-term channel blocking. Two S6 domain mutations, Y652A and F656A, partially attenuated (Y652A) or abolished (F656A) the hERG current blockade, suggesting that nicardipine blocks the hERG channel at the pore of the channel.

Block of hERG $K^+$ Channel by Classic Histamine $H_1$ Receptor Antagonist Chlorpheniramine

  • Hong, Hee-Kyung;Jo, Su-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.215-220
    • /
    • 2009
  • Chlorpheniramine is a potent first-generation histamine $H_1$ receptor antagonist that can increase action potential duration and induce QT prolongation in several animal models. Since block of cardiac human ether-a-go-go-related gene (hERG) channels is one of leading causes of acquired long QT syndrome, we investigated the acute effects of chlorpheniramine on hERG channels to determine the electrophysiological basis for its proarrhythmic potential. We examined the effects of chlorpheniramine on the hERG channels expressed in Xenopus oocytes using two-microelectrode voltage-clamp techniques. Chlorpheniramine induced a concentration-dependent decrease of the current amplitude at the end of the voltage steps and hERG tail currents. The $IC_{50}$ of chlorpheniramine-dependent hERG block in Xenopus oocytes decreased progressively relative to the degree of depolarization. Chlorpheniramine affected the channels in the activated and inactivated states but not in the closed states. The S6 domain mutations Y652A and F656A partially attenuated (Y652A) or abolished (F656A) the hERG current block. These results suggest that the $H_1$ antihistamine, chlorpheniramine is a blocker of the hERG channels, providing a molecular mechanism for the drug-induced arrhythmogenic side effects.

Acepromazine inhibits hERG potassium ion channels expressed in human embryonic kidney 293 cells

  • Joo, Young Shin;Lee, Hong Joon;Choi, Jin-Sung;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.75-82
    • /
    • 2017
  • The effects of acepromazine on human ether-$\grave{a}$-go-go-related gene (hERG) potassium channels were investigated using whole-cell voltage-clamp technique in human embryonic kidney (HEK293) cells transfected with hERG. The hERG currents were recorded with or without acepromazine, and the steady-state and peak tail currents were analyzed for the evaluating the drug effects. Acepromazine inhibited the hERG currents in a concentration-dependent manner with an $IC_{50}$ value of $1.5{\mu}M$ and Hill coefficient of 1.1. Acepromazine blocked hERG currents in a voltage-dependent manner between -40 and +10 mV. Before and after application of acepromazine, the half activation potentials of hERG currents changed to hyperpolarizing direction. Acepromazine blocked both the steady-state hERG currents by depolarizing pulse and the peak tail currents by repolarizing pulse; however, the extent of blocking by acepromazine in the repolarizing pulse was more profound than that in the depolarizing pulse, indicating that acepromazine has a high affinity for the open state of the channels, with a relatively lower affinity for the closed state of hERG channels. A fast application of acepromazine during the tail currents inhibited the open state of hERG channels in a concentration-dependent. The steady-state inactivation of hERG currents shifted to the hyperpolarized direction by acepromazine. These results suggest that acepromazine inhibits the hERG channels probably by an open- and inactivated-channel blocking mechanism. Regarding to the fact that the hERG channels are the potential target of drug-induced long QT syndrome, our results suggest that acepromazine can possibly induce a cardiac arrhythmia through the inhibition of hERG channels.

2D-QSAR analysis for hERG ion channel inhibitors (hERG 이온채널 저해제에 대한 2D-QSAR 분석)

  • Jeon, Eul-Hye;Park, Ji-Hyeon;Jeong, Jin-Hee;Lee, Sung-Kwang
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.533-543
    • /
    • 2011
  • The hERG (human ether-a-go-go related gene) ion channel is a main factor for cardiac repolarization, and the blockade of this channel could induce arrhythmia and sudden death. Therefore, potential hERG ion channel inhibitors are now a primary concern in the drug discovery process, and lots of efforts are focused on the minimizing the cardiotoxic side effect. In this study, $IC_{50}$ data of 202 organic compounds in HEK (human embryonic kidney) cell from literatures were used to develop predictive 2D-QSAR model. Multiple linear regression (MLR), Support Vector Machine (SVM), and artificial neural network (ANN) were utilized to predict inhibition concentration of hERG ion channel as machine learning methods. Population based-forward selection method with cross-validation procedure was combined with each learning method and used to select best subset descriptors for each learning algorithm. The best model was ANN model based on 14 descriptors ($R^2_{CV}$=0.617, RMSECV=0.762, MAECV=0.583) and the MLR model could describe the structural characteristics of inhibitors and interaction with hERG receptors. The validation of QSAR models was evaluated through the 5-fold cross-validation and Y-scrambling test.

In silico Analysis on hERG Channel Blocking Effect of a Series of T-type Calcium Channel Blockers

  • Jang, Jae-Wan;Song, Chi-Man;Choi, Kee-Hyun;Cho, Yong-Seo;Baek, Du-Jong;Shin, Kye-Jung;Pae, Ae-Nim
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.251-262
    • /
    • 2011
  • Human ether-a-go-go related gene (hERG) potassium channel blockade, an undesirable side effect which might cause sudden cardiac death, is one of the major concerns facing the pharmaceutical industry. The purpose of this study is to develop an in silico QSAR model which uncovers the structural parameters of T-type calcium channel blockers to reduce hERG blockade. Comparative molecular similarity indices analysis (CoMSIA) was conducted on a series of piperazine and benzimidazole derivatives bearing methyl 5-(ethyl(methyl)amino)-2-isopropyl-2-phenylpentanoate moieties, which was synthesized by our group. Three different alignment methods were applied to obtain a reliable model: ligand based alignment, pharmacophore based alignment, and receptor guided alignment. The CoMSIA model with receptor guided alignment yielded the best results : $r^2$ = 0.955, $q^2$ = 0.781, $r^2_{pred}$ = 0.758. The generated CoMSIA contour maps using electrostatic, hydrophobic, H-bond donor, and acceptor fields explain well the structural requirements for hERG nonblockers and also correlate with the lipophilic potential map of the hERG channel pore.

Effects of Paroxetine on a Human Ether-a-go-go-related Gene (hERG) K+ Channel Expressed in Xenopus Oocytes and on Cardiac Action Potential

  • Hong, Hee-Kyung;Hwang, Soobeen;Jo, Su-Hyun
    • International Journal of Oral Biology
    • /
    • v.43 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • $K^+$ channels are key components of the primary and secondary basolateral $Cl^-$ pump systems, which are important for secretion from the salivary glands. Paroxetine is a selective serotonin reuptake inhibitor (SSRI) for psychiatric disorders that can induce QT prolongation, which may lead to torsades de pointes. We studied the effects of paroxetine on a human $K^+$ channel, human ether-a-go-go-related gene (hERG), expressed in Xenopus oocytes and on action potential in guinea pig ventricular myocytes. The hERG encodes the pore-forming subunits of the rapidly-activating delayed rectifier $K^+$ channel ($I_{Kr}$) in the heart. Mutations in hERG reduce $I_{Kr}$ and cause type 2 long QT syndrome (LQT2), a disorder that predisposes individuals to life-threatening arrhythmias. Paroxetine induced concentration-dependent decreases in the current amplitude at the end of the voltage steps and hERG tail currents. The inhibition was concentration-dependent and time-dependent, but voltage-independent during each voltage pulse. In guinea pig ventricular myocytes held at $36^{\circ}C$, treatment with $0.4{\mu}M$ paroxetine for 5 min decreased the action potential duration at 90% of repolarization ($APD_{90}$) by 4.3%. Our results suggest that paroxetine is a blocker of the hERG channels, providing a molecular mechanism for the arrhythmogenic side effects of clinical administration of paroxetine.

Response of $I_{Kr}$ and hERG Currents to the Antipsychotics Tiapride and Sulpiride

  • Jo, Su-Hyun;Lee, So-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.305-310
    • /
    • 2010
  • The human $ether$-$a$-$go$-$go$-related gene ($hERG$) channel is important for repolarization in human myocardium and is a common target for drugs that prolong the QT interval. We studied the effects of two antipsychotics, tiapride and sulpiride, on hERG channels expressed in $Xenopus$ oocytes and also on delayed rectifier $K^+$ currents in guinea pig cardiomyocytes. Neither the amplitude of the hERG outward currents measured at the end of the voltage pulse, nor the amplitude of hERG tail currents, showed any concentration-dependent changes with either tiapride or sulpiride ($3{\sim}300{\mu}M$). However, our findings did show that tiapride increased the potential for half-maximal activation ($V_{1/2}$) of HERG at $10{\sim}300{\mu}M$, whereas sulpiride increased the maximum conductance ($G_{max}$) at 3, 10 and $100{\mu}M$. In guinea pig ventricular myocytes, bath applications of 100 and $500{\mu}M$ tiapride at $36^{\circ}C$ blocked rapidly activating delayed rectifier $K^+$ current ($I_{Kr}$) by 40.3% and 70.0%, respectively. Also, sulpiride at 100 and $500{\mu}M$ blocked $I_{Kr}$ by 38.9% and 76.5%, respectively. However, neither tiapride nor sulpiride significantly affected the slowly activating delayed rectifier $K^+$ current ($I_{Ks}$) at the same concentrations. Our findings suggest that the concentrations of the antipsychotics required to evoke a 50% inhibition of IKr are well above the reported therapeutic plasma concentrations of free and total compound.

Taxifolin Glycoside Blocks Human ether-a-go-go Related Gene $K^+$ Channels

  • Yun, Jihyun;Bae, Hyemi;Choi, Sun Eun;Kim, Jung-Ha;Choi, Young Wook;Lim, Inja;Lee, Chung Soo;Lee, Min Won;Ko, Jae-Hong;Seo, Seong Jun;Bang, Hyoweon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Taxifolin glycoside is a new drug candidate for the treatment of atopic dermatitis (AD). Many drugs cause side effects such as long QT syndrome by blocking the human ether-a-go-go related gene (hERG) $K^+$ channels. To determine whether taxifolin glycoside would block hERG $K^+$ channels, we recorded hERG $K^+$ currents using a whole-cell patch clamp technique. We found that taxifolin glycoside directly blocked hERG $K^+$ current in a concentration-dependent manner ($EC_{50}=9.6{\pm}0.7{\mu}M$). The activation curve of hERG $K^+$ channels was negatively shifted by taxifolin glycoside. In addition, taxifolin glycoside accelerated the activation time constant and reduced the onset of the inactivation time constant. These results suggest that taxifolin glycoside blocks hERG $K^+$ channels that function by facilitating activation and inactivation process.

Development of Classification Model for hERG Ion Channel Inhibitors Using SVM Method (SVM 방법을 이용한 hERG 이온 채널 저해제 예측모델 개발)

  • Gang, Sin-Moon;Kim, Han-Jo;Oh, Won-Seok;Kim, Sun-Young;No, Kyoung-Tai;Nam, Ky-Youb
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.653-662
    • /
    • 2009
  • Developing effective tools for predicting absorption, distribution, metabolism, excretion properties and toxicity (ADME/T) of new chemical entities in the early stage of drug design is one of the most important tasks in drug discovery and development today. As one of these attempts, support vector machines (SVM) has recently been exploited for the prediction of ADME/T related properties. However, two problems in SVM modeling, i.e. feature selection and parameters setting, are still far from solved. The two problems have been shown to be crucial to the efficiency and accuracy of SVM classification. In particular, the feature selection and optimal SVM parameters setting influence each other, which indicates that they should be dealt with simultaneously. In this account, we present an integrated practical solution, in which genetic-based algorithm (GA) is used for feature selection and grid search (GS) method for parameters optimization. hERG ion-channel inhibitor classification models of ADME/T related properties has been built for assessing and testing the proposed GA-GS-SVM. We generated 6 different models that are 3 different single models and 3 different ensemble models using training set - 1891 compounds and validated with external test set - 175 compounds. We compared single model with ensemble model to solve data imbalance problems. It was able to improve accuracy of prediction to use ensemble model.

Pharmacokinetics Characters and ADMET Analyses of Potently Pig Pheromonal Odorants (돼지 페로몬 성 냄새 분자들의 약물동력학적 특성과 ADMET 분석)

  • Choi, Kyung-Seob;Park, Chang-Sik;Sung, Nack-Do
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.153-159
    • /
    • 2010
  • The 34 potently pig pheromonal odorants (1-32, 5755 & 7113) through structure-based virtual screening and ligand-based virtual screening method were selected and their ADMET and pharmacokinetics characters were evaluated and discussed quantitatively. The pheromonal odorants were projected on the following pre-calculated models, Caco-2 cell permeability, blood-brain barrier permeation, hERG inhibition and volume-distribution. From the results of in silico study, it is found that an optimal compound (31) either penetrating or have a little ($P_{caco2}$=-8.143) for Caco-2 cell permeability, moderate penetrating ability ($P_{BBB}$=0.082) for blood-brain barrier permeation, the low QT prolongation ($P_{hERG}$=1.137) for the hERG $K^+$ channel inhibition, and low distribution into tissues ($P_{VD}$=-5.468) for volume-distribution. Therefore, it is predicted that the compound (31) a topical application may be preferable from these based foundings.