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Human ether-a-go-go related gene (hERG) potassium channel blockade, an undesirable side effect which might cause 
sudden cardiac death, is one of the major concerns facing the pharmaceutical industry. The purpose of this study is to 
develop an in silico QSAR model which uncovers the structural parameters of T-type calcium channel blockers to reduce 
hERG blockade. Comparative molecular similarity indices analysis (CoMSIA) was conducted on a series of piperazine 
and benzimidazole derivatives bearing methyl 5-(ethyl(methyl)amino)-2-isopropyl-2-phenylpentanoate moieties, which 
was synthesized by our group. Three different alignment methods were applied to obtain a reliable model: ligand based 
alignment, pharmacophore based alignment, and receptor guided alignment. The CoMSIA model with receptor guided 
alignment yielded the best results : 2r  = 0.955, 2q  = 0.781, 2

predr  = 0.758. The generated CoMSIA contour maps using 
electrostatic, hydrophobic, H-bond donor, and acceptor fields explain well the structural requirements for hERG non- 
blockers and also correlate with the lipophilic potential map of the hERG channel pore.
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Introduction

Long QT syndrome (LQTS) is a disorder of ventricular re-
polarization, which is associated with the development of car-
diac arrhythmias or the degeneration into sudden cardiac death 
during a severe case. It is characterized by the prolongation of 
the QT interval in a body surface electrocardiogram (ECG) 
which indicates the time between initial depolarization and final 
repolarization of the ventricles.1 Inherited LQTS can be caused 
by the mutations in the human ether-à-go-go related gene 
(hERG), which is highly expressed as a potassium channel in 
the heart system and mediates cardiac repolarization,1-3 while 
acquired LQTS can occur via the blocking of the hERG channel 
either by the medications for arrhythmia or by common non- 
cardiac medications.1 This hERG channel blockade by drugs 
has resulted in safety concerns by health regulatory authorities 
and pharmaceutical companies and has become one of the rea-
sons for the withdrawal of many drugs from the market.4 Now, 
testing the hERG blockade is a routine process at an early 
stage of drug development before clinical testing.5

For these reasons, several attempts have been made to find 
out the binding mechanism of the hERG blockers. Above all, 
many studies have discovered the hERG channel structure, 
which has helped researchers understand about drug binding. 
Although still no crystal structure of human has been available 
so far, the crystal structure of mammalian potassium channel 
(Kv1.2)6 and the bacterial K+ channel (KcsA,7 MthK,8 and 
KvAP9) have given us an useful insight into the structural infor-
mation of hERG channel. It is formed by the coassembly of 
four subunits, each of which is constructed by six α-helical trans-
membrane domains, designated as S1 to S6 including pore helix 
region between S5 and S6. Among them, S6 and the pore helix 

cover the drug binding site. Ala-scanning mutagenesis studies 
have identified critical residues interacting with drugs on those 
transmembranes.5 Those are two aromatic residues and two 
polar residues : Tyr 652 and Phe 656 on S6 and Thr 623 and Ser 
624 on the pore helix.5 Some residues are also known as in-
teracting with hERG blockers by the indirect method through 
an allosteric effect.5 On the other hand, it was also found that 
the dimension of the pore also changed according to its confor-
mational alteration : open state and closed state.1 The electro-
physiology experiments revealed that the channel must be open 
state for drugs to bind. However, after a drug binds to the pore, 
S6 can move towards an inner direction, which results in some 
closing of the inner cavity. This also causes the changing of the 
binding interaction. Therefore, the closed as well as open state 
of the hERG channel has been studied together.

In spite of those efforts, the mechanism of the binding of 
hERG channel blockers still remains doubtful. To make things 
worse, a structural diversity of hERG blockers leads to confu-
sion and difficulties in understanding this process.10 In an effort 
to solve this complex and multi-faceted problem, several in 
silico methods have been applied to characterization of the 
hERG channel blocking property. A ligand based method that-
can be applied when there is no available crystal structure in-
formation of the receptor is one of the approaches that has been 
used so far. There have been various applications regarding a 
ligand based method about the hERG in the last few years : Cla-
ssification usng decision tree,11,12 support vector machine,13,14,15 
bayesian,16 artificial neural network,17,18 and QSAR using two 
dimentional19,20 or three dimentional method by means of 
pharmacophore,21 CoMFA,22 CoMSIA,23 GRIND descriptors.24 
Recently a similarity-based classifier by topomer search was 
proposed by Britta Nisius et al.25
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Table 1. Experimental and predicted hERG blocking activity of benzimidazole derivatives

N

O
O

N
H

N

R1

2

3

4 5

6

R3

R2

Compda R1 R2 R3 Experimental pIC50
Predicted pIC50

Alignment 1 Alignment 2 Alignment 3

1 4-OMe Me Me 5.548 5.696 5.388 5.510
2 6-OMe H H 6.678 6.439 6.554 6.649
3 6-OMe Me Me 5.607 5.744 5.559 5.657
4 6-OMe H OMe 6.201 6.482 6.448 6.238
5 3,4-OMe H H 6.161 6.087 6.134 6.145
6 4-F H H 6.456 6.003 6.236 6.320
7* 4-F H OMe 6.509 6.071 5.836 6.352
8 4-F Me Me 5.650 5.816 5.792 5.759

9 N

O
O

O

N

Br

5.182 5.213 5.344 5.105

10
N

O
O

N
H

N

Br

O
5.176 5.091 5.248 5.171

11 N
H

N N
H

NO

Br

5.796 5.932 5.769 5.839

aCompounds labeled with an “*” symbol are the test set.

A lot of studies reported so far were hERG in silico model 
using diverse scaffold from different laboratories because it was 
difficult to collect many compounds having same scaffold with 
hERG inhibitory data or because it was needed to utilize diverse 
scaffold for its unique property of hERG channel. However, 
studies about hERG using compounds having similar scaffold 
were also carried out. Pearlstein et al. proposed CoMSIA model 
based on sertindole and its analogues with some of other hERG 
blockers. 

We have developed T-type calcium channel blockers for the 
treatment of cardiovascular, neuronal, and endocrine systems.30 

Many of structurally unique calcium channel blockers have been 
known to block the hERG channel.66-70 Furthermore, our analo-
gues are based on Mibefradil (Posicor®, Hoffman-La Roche) 
(Fig. 10A), which have high hERG blocking activity (IC50 = 
1.43 µM, HEK cells),65 and other potent analogues. Thus, it 
makes us more cautious about hERG channel side effect.

In this work, to predict the hERG channel blocking activity 
of our T-type calcium channel blockers having 5-ethylmethyl-
amino-2-isopropyl-2-phenylpentanoate moieties, we adopted 
CoMSIA26 technique, one of the popular ligand based molecular 

modeling approaches. Its strong advantage is to offer users gra-
phical representation of structural requirement for the activity. 
It will be much easier for medicinal chemists to interpret the 
model shown by graphical representation. To overcome the diffi-
culties of aligning the highly flexible compounds for CoMSIA, 
diverse alignment strategies were tried and compared to each 
other. Before generating the model, the binding affinity to 
hERG channel of all the compounds was assessed by a single 
hERG electrophysiological assay in our lab and this guaranteed 
the internal consistency of the data set. We demonstrate that 
the derived best CoMSIA model using those data sets will give 
insight into the structural requirements of T-type calcium channel 
blockers to eliminate the hERG side effects and help us to 
design novel T-type calcium channel blockers without hERG 
toxicity.

Computational Methods

Dataset. A series of 38 T-type calcium channel blockers, 
which had been already synthesized by our group,30 were used 
as a dataset. The in vitro hERG channel blocking activites of 
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Table 2. Experimental and predicted hERG blocking activity of piperazine derivatives

N

O
O N

2

3

4 5

6

R5
R4

R1

Compd R1 R4 R5 Experimental pIC50
Predicted pIC50

Alignment 1 Alignment 2 Alignment 3

12 H Et 2-Methoxyphenyl 5.991 5.734 6.023 5.903
13 H Et 3-Methoxyphenyl 5.728 5.656 5.684 5.793
14 H Et 2-Fluorophenyl 5.387 5.471 5.440 5.363
15 H Et 4-Fluorophenyl 5.367 5.623 5.520 5.449
16 4-Br Me 4-Trifluoromethylbenzyl 5.684 5.720 5.685 5.679
17 4-Br Me 4-Methoxyphenyl 5.662 5.683 5.759 5.769
18 4-Br Me 4-Methylbenzyl 5.830 5.467 5.589 5.747
19 4-Br Me 2-Chloro,6-fluorobenzyl 5.127 5.485 5.239 5.186
20 5-Br Me 3-Fluorobenzyl 5.652 5.520 5.521 5.588
21* 3-Br Me 3,4,5-Trimethoxybenzyl 5.435 5.406 5.396 5.136
22 3-Br Me 3-Methylbenzyl 5.254 5.277 5.190 5.252
23* 3-Br Me 4-Methylbenzyl 5.088 5.275 5.311 5.254
24 3-Br Me 4-Chlorobenzyl 5.250 5.349 5.272 5.185
25 4-F Me Phenyl 5.815 5.714 5.712 5.689
26* 4-F Me 6-Fluorophenyl 5.287 5.551 5.584 5.589
27 4-F Me 3-Fluorobenzyl 5.580 5.707 5.549 5.590
28 4-F Me 4-Fluorobenzyl 5.735 5.701 5.647 5.645
29 4-F Me 3-Methoxyphenyl 5.796 5.736 5.828 5.827
30* 4-F Me 4-Methoxyphenyl 5.889 5.726 5.722 5.634
31* 4-F Me 4-Methoxybenzyl 5.708 5.636 5.750 5.625
32* 4-F Me 5-Methylbenzyl 5.611 5.611 5.588 5.678
33 4-F Me 4-Methylbenzyl 5.456 5.526 5.615 5.680
34 4-F Me 4-Isobutylbenzyl 5.807 5.645 5.800 5.742
35 4-F Me 4-Chlorobenzyl 5.435 5.599 5.578 5.612
36* 4-F Me 3,4-Dichlorobenzyl 5.678 5.644 5.523 5.616

37 N

O
O N

Br

O

OCH3 4.909 4.768 4.813 4.888

38
N
H

N
N

OCH3

O

Br

5.068 5.103 5.051 5.011

aCompounds labeled with an “*” symbol are the test set.

those compounds were tested with hERG potassium channels 
expressed in CHO-K1 cells. The in vitro hERG inhibitory acti-
vity (IC50) was converted into a pIC50 (-logIC50) value, and used 
as a dependant variable for the CoMSIA analysis (Table 1, 2). 
The whole dataset was divided into a training set and a test set 
in an approximately standard ratio of 4:1 for a QSAR study  the 

training set with 30 compounds, and the test set with 8 com-
pounds. The training set was used to build the QSAR models, 
while the test set was employed to access the predictive ability 
of a generated model. The test set was selected in a way that 
covers the wide range of activity values. 

Molecular Modeling and Alignment. All calculations were 
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performed using molecular modeling software SYBYL 8.1,31 
installed on a Linux workstation (CentOS 5.2, Intel Core2 
Quad Q6700 2.66 GHz) and Maestro 8.032 installed on a Linux 
workstation (CentOS 4.7, Dual-Core Opteron Processor 2216). 
The result of the CoMSIA analysis is strongly dependant on 
the ligand alignment method. Thus, three different alignments 
were tested to identify the best alignment approach to our data 
set. 

Scheme 1 : Ligand based alignment  
Simulated annealing was applied to get the ideally good 

global minimum conformation of the most active compound.33 
All the other molecules were created from this optimized com-
pound. Structures were drawn from Sketch Molecule in SYBYL 
8.1. For a simulated annealing, the system was heated up to a 
temperature of 700K for 1000 fs, and then annealed to 200K for 
1000fs. The annealing function was exponential, and ten such 
cycles were run. When creating molecules from the template, 
initial minimization was carried out by aggregating unchanged 
part of the new compounds using the AGGREGATE module 
in SYBYL 8.1 and tolerating changed bonds and atoms to mini-
mize. Full minimization followed after that process. Energy 
minimizations were performed by the Powell method applying 
a Tripos force field34 and a Gasteiger-Marsili35 charge. A conver-
gence criterion was set to 0.05 kcal/(mol Å), and maximum itera-
tion was at 100. After generating all the geometry of compounds, 
the alignment was carried out using the most active compound. 
To perform the ‘Rigid Field Fit’ alignment supplied within 
SYBYL, the steric and electrostatic fields of that compound 
were extracted for a template. The geometry of the remaining 
molecules were adjusted to those calculated template fields. 
The resultant alignment of the training and the test set is shown 
in Fig. 2A. 

Scheme 2: Pharmacophore based alignment
Pharmacophore generation and data set alignment were per-

formed using PHASE (version 2.5, 2007; Schrödinger, LLC, 
New York, NY). We drew structures in Maestro interface and 
optimized them in Ligprep module implemented in Maestro. 
Those minimized conformations of all the compounds were 
subjected to the project table in the Develop Pharmacophore 
Hypothesis panel in Maestro. Diverse conformations of all the 
compounds were generated by the torsion angle search method36 
followed by minimization using an OPLS-2005 force field with 
a solvation treatment as a distance-dependent dielectric. The 
maximum number of conformers was set to 1000 per structure, 
and the maximum relative energy difference was set to 10.0 kcal/ 
mol. Compounds having an activity greater than 6.0 of pIC50 was 
determined as active for evaluating the pharmacophore hypo-
thesis using survival score. The pharmacophore was generated 
based on the six built-in types of pharmacophore feature pro-
vided in PHASE : hydrogen bond acceptor (A), hydrogen bond 
donor (D), hydrophobe (H), negative ionizable area (N), positive 
ionizable area (P), and aromatic ring (R).36 After generating the 
pharmacophore, those pharmacophore hypotheses were ranked 
according to survival score to get the best one. The survival score 
will be high when the pharmacophore hypothesis matches the 
active compounds well. After that, we selected the best phar-
macophore hypothesis based on the statistical result of the 3D- 
QSAR model. Partial least-square regression was conducted 

to build the 3D-QSAR model. The QSAR module in Phase was 
used and it employs the information whether or not the ligand 
occupy the pharmacophore in the space and how well it corre-
lates with its experimental activity value. All molecules mapped 
to the selected bestpharmacophore hypothesis were imported 
to the SYBYL interface for CoMSIA analysis. Selected align-
ment of the training and the test set using the best pharma-
cophore hypothesis is illustrated in Fig. 2B.

Scheme 3: Receptor guided alignment
We tried docking of the most active compound and prepared 

all the rest of molecules based on that conformation. We used 
the open state MthK derived hERG homology model by Imai 
et al.10 for docking because it is known that many hERG blockers 
bind to the receptor when it is in the open state.37-42 The structure 
was imported to Maestro, and prepared with the Protein Prepara-
tion Wizard. The most reasonable binding conformation of the 
most active compound was predicted using Glide 3.0 (Schro-
dinger, LLC, Portland, OR) with extra precision scoring. The 
rest of the molecules were built with the Maestro build panel 
based on that structure. Energy minimization of each compound 
was performed on the MacroModel module in Maestro with an 
OPLS-2005 force field and a constant dielectric for electrostatic 
treatment. Because we assumed that the rest of the compounds 
will occupy the same 3D position in the binding site as the most 
active compound43,44 ligands were enclosed by the receptor 
binding site to avoid relaxation of the original docked conforma-
tion when doing minimization. The changed part of the structure 
was allowed to minimize, while a constraint was applied to the 
atom of the unchanged portion with a force constant of 100. 
The enclosing receptor residues were frozen. All compounds 
minimized were exported to SYBYL to develop the CoMSIA 
model. The resulting alignment was shown in Fig. 2C. 

CoMSIA Analyses. The CoMSIA model was generated using 
the QSAR module in SYBYL 8.1. Five different similarity 
fields were generated such as steric, electrostatic, hydrophobic, 
hydrogen bond donor, and hydrogen bond acceptor. CoMSIA 
uses a Gaussian function for its calculation of similarity indices, 
and we used 0.3, which is thedefault value, for its attenuation 
factor. These calculations of the CoMSIA similarity indices 
were on the regularly spaced grid points (2Å) surrounding the 
prealigned molecules. The equation for the similarity indices 
is as follows: 

2

1
,, )( iqr

n

i
ikkprobe

q
KF ejA αωω −

=
∑−=

where A is the similarity index at the grid point q, summed 
over all atoms I of the molecule j under investigations ; ωprobe,k 

is the probe atom ; ωik is the actual value of the physicochemical 
property k of atom I ; riq is the mutual distance between the probe 
atom at grid point q and the atom i of the test molecule ; R is the 
attenuation factor. Region focusing45 was applied to optimize 
the generated model by making re-contribution of the weight to 
the lattice points. As a region focusing procedure, Discriminant 
power was used.   

Partial Least-Square (PLS) Analysis and Validation. Partial 
Least Squares Analysis was performed by the QSAR module 
in SYBYL to build a linear relationship between dependant 
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and independent variables, which are the pIC50 value and the 
CoMSIA descriptors, respectively. The optimal number of com-
ponents was determined by considering a 2Q  value, which was 
generated by the leave-one-out (LOO) cross-validation method 
using SAMPLS.46 The number of components was increased 
until additional compounds did not increase 2Q  by at least 5% 
per added component. A non-cross-validated analysis was 
carried out using this optimal number of components. PRESS 
(the root mean predictive error sum of square), F value, and 
standard error of estimate (SEE) value were calculated along 
with the non-cross-validated-correlation coefficient. Column 
filtering value was set to 2.0 kcal/mol to increase the signal to 
noise raton when PLS analysis. The equation for the cross- 
validated coefficient is as follows:

∑
∑

−

−
−= 2

2
2

)(
)(

1
meanobserved

observedpredicted
cv YY

YY
r

where Ypredicted, Yobserved, and Ymean are the predicted, observed, 
and mean values of the target property (pIC50), respectively. 
∑ − 2)( observedpredicted YY  is the predictive sum of squares.

To validate the derived QSAR model, bootstrapping and 
crossvalidation were carried out. The basic idea of bootstrapping 
is that it simulates a statistical sampling procedure randomly 
generating many new data sets from the original data set, and 
the parameter is calculated between original data set and the 
average of many bootstrap samplings to measure the bias of 
the original calculation. In the case of crossvalidation, leave- 
one-out (LOO) and leave-group-out (five groups and ten groups) 
were performed to validate the model. The concept of cross-
validation is that some molecules are omitted from the data 
set, and then a model is generated by compounds left, which 
will predict the activity of the omitted compounds. Leave-one- 
out will exclude one compound in each running, and generate 
the model using remaining compounds to predict the excluded 
one. In the case of group crossvalidation of five, 4/5ths of all 
compounds will generate the model, and predict the remaining 
1/5th of all compounds by the generated model. The predictive 
ability of the model was evaluated by the predictive correlation 
coefficient, 2

predr . A total of 11 compounds, which were not in- 
cluded in the training set, were predicted by the model, and 

2
predr  was calculated using following equation:

2
predr  = 1 ‒ (PRESS/SD),

where SD is the sum of the squared deviation between the actual 
activities of the compounds in the test set and the mean activity 
of the compounds in the training set, and PRESS is the sum of 
the squared deviations between predicted and actual activities 
for every compounds in the test set.

Binding Free Energy Calculation. To validate using the geo-
metry of docked pose of the most active compound, we cal-
culated the binding free energy of the aligned compounds. It 
was calculated by the linear interaction energy (LIE) method. 
LIE method assumes that the binding energy can be simply 
calculated by considering the energy of the bound complex 
with the energy of the free ligand-receptor system. Liaison47 

implemented in Schrödinger package predict ligand-protein 
binding free energies using the Surface Generalized Born (SGB) 
continuum model for solvation. Contrary to the explicit-solvent 
method of Åqvist,48 Liaison performs calculations based on the 
implicit solvent, which improves the computational efficiency.47 
The ∆Gbind is derived by the following empirical equation :

bindGΔ  = (α <U
b
vdw > - <U

f
vdw >) +

b
elecU<(β > 

               - <U
f
elec >) +γ (<U

b
cav >-<U

f
cav >) ,

where α, β and γ are the coefficients ; b indicates the bound form 
of the ligand ; f indicates the free form of the ligand ; < > 
represents the ensemble average ; Uvdw represents the van der 
Waals interaction  Uelec represents the electrostatic contribution; 
U cav represents energy term proportional to the exposed surface 
area of the ligand in SGB continuum solvent model.49 The 
Liason’s simulation calculates the values of Uvdw, Uelec, and U cav

of training-set compounds. Using those LIE-SGB descriptors 
(Uvdw, Uelec, and Ucav), Multiple Linear Regression was carried 
out to predict pIC50 value of compounds. The experimental 
pIC50 of the hERG blocking activity was used as a dependant 
variable when building the model. Strike50 implemented in the 
Schrödinger package was used for those statistical calculations.

hERG Binding Assay.
Cell Culture: CHO-K1 cells expressing hERG (human ether- 

a-go-go-related gene) channels via the inducible Tet-On gene 
expression system (CHO-K1 Tet-On hERG cells) were purchas-
ed from IonGate Biosciences GmbH (Frankfurt, Germany). 
CHO-K1 Tet-On hERG cells were cultured in Dulbecco’s modi-
fied Eagle’s medium containing 10% (v/v) fetal bovine serum, 
penicillin (100 U/mL), streptomycin (100 μg/mL), G418 (200 
µg/mL), hygromycin (200 µg/mL), puromycin (2 µg/mL), and 
fungizone (2.5 µg/mL) in humidified 5% CO2 at 37 oC. Cells 
were passaged every three days by treatment with trypsin. For 
hERG channel expression, the Tet-On gene expression system 
was induced by adding 5 µg/mL of doxycyclin (Sigma, St. 
Louis, MO, USA) into the growth medium. Approximately 20 
to 32 h after addition of doxycyclin, the cells were used for 
whole-cell recordings.

Electrophysiology. Micropipettes were pulled from borosili-
cate glass capillaries (GC150T-7.5 Warner Instrument Corp., 
Hamden, CT, USA) on a puller (P-97 Sutter Instrument Co., No-
vato, CA, USA) with resistance of typically ~3 - 4 M. Whole-cell 
currents were recorded with the pipette (intracellular) solution 
containing (in mM): 130 KCl, 1 MgCl2, 5 EGTA, 5 Mg-ATP, 
and 10 HEPES, pH to 7.2 and with the bath (extracellular) solu-
tion containing (in mM): 137 NaCl, 4 KCl, 10 glucose, 1.8 
CaCl2, 1 MgCl2, and 10 HEPES, pH to 7.4. Each test compound 
was dissolved in DMSO as 100 mM stock solutions, and was 
diluted in the bath solution and directly perfused to the bath. 
Whole-cell recordings were performed at room temperature 
with an EPC-10 patch clamp amplifier (HEKA, Germany) and 
were low-pass filtered (5 kHz) with a 4-pole Bessel filter. hERG 
channel tail currents were evoked by repolarizing steps to ‒50 
mV for 500 ms following a 200-ms depolarization potential of 
20 mV at a holding potential of ‒80 mV with 20-s sweep in-
tervals. Whole-cell currents were acquired and digitized at 10 
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Figure 1. Three different conformations of the most active compound.
(A) structural drawing of the most active compound; (B) superimposi-
tion of three different conformations of the most active compound. ‘Fit
Atoms’ was used to superimpose the structures. Green denotes the 
global minimized conformation, orange denotes the pharmacophore 
based conformation and red denotes the receptor guided conformation.

(A) (B)

(C)

Figure 2. Alignment of the training and test sets: (A) ligand based align-
ment, (B) pharmacophore based alignment and (C) receptor guided 
alignment. (A template molecule is shown as a stick model.)

Figure 3. Mapping of the Common Pharmacophore Hypothesis (ID =
15) with the most active compound. Pink transparent spheres with 
arrows, a blue sphere, a green sphere, and orange toroids represent H-
bond acceptors, a negatively charged group, a hydrophobic group, 
and aromatic rings, respectively.

kHz using the PATCHMASTER (HEKA, Germany).
Data Analysis. Whole-cell recordings were analyzed using 

the PATCHMASTER/FITMASTER (HEKA, Germany) and 
the GraphPad Prism 4 (GraphPad Software, Inc., La Jolla, CA, 
USA)software. The dose-response curve was fitted to a Hill 
equation (sigmoidal dose-response equation), I  =  Imin + (Imax - 
Imin) / (1 + 10((LogIC50 - C) x h)) where Imin and Imax are the normalized 
minimum and maximum tail currents, respectively. IC50 is the 
half-maximum inhibition concentration. C is the logarithm of 
concentration. h is the hill coefficient. All results are presented 
as the means ± S.E.M. 

Results and Discussion

Three different CoMSIA models were generated by different 
alignment approaches using 38 T-type calcium channel block-
ers. In CoMSIA, the alignment based on bioactive conformation 
will guarantee a reliable model. Unfortunately, no X-ray data 
of hERG blockers has been disclosed so far. Therefore, it was 
needed to generate a bioactive conformer of the compound. 
Due to its high flexibility of the compounds, we adopted a diff-
erent alignment approach to identify the bioactive conformation. 
The conformation was changed according to a different align-
ment approach. Three different conformations of the most active 
compound are shown in Fig. 1.

CoMSIA Statistical Results. Three different CoMSIA models 
were generated based on different alignment methods. The 
different conformations of the most active compounds were 
superimposed, and presented in Fig. 2. This demonstrates that 
the flexibility of the template molecule is high, and that more 
careful determination about bioactive conformation is needed. 

The first model based on the global minimized conformation 
of the most active compound (Fig. 2A) gave the 2q  of 0.521 with 
an optimal number of components of three and a non-cross- 
validated correlation coefficient 2r  of 0.790 ( 2q > 0.5 ) (Table 
3). In contrast to CoMFA, CoMSIA has five different fields, and 
it is highly unlikely that they are independent of each other.51 

Such dependencies of the individual fields usually decrease 
the signal-to-noise ratio in the data,52 and lower the statistical 
significance of the results.51 Therefore, 31 possible combina-
tions of different fields were carried out to obtain the best 
CoMSIA model (data not shown). The steric, electrostatic, hy-
drophobic, and H-bond donor fields yielded the best results. 

The second method for the alignment was based on the phar-
macophore of ligands (Fig. 2B). The program PHASE (Phar-
macophore Alignment and Scoring Engine), which we used for 
our compound alignment, generates reasonable conformations, 
and finds plausible pharmacophores with its tree-based parti-
tioning algorithm, which will be evaluated according to the scor-
ing function and also by building a PLS regression model.53 We 
adjusted the number of sites (the number of pharmacophores) as 
six, because five sites generated a too small number of  pharma-
cophore hypotheses, and seven sites yielded a too large number 
of  pharmacophore hypotheses. Those six pharmacophores were 
comprised of two hydrogen bond acceptors (A), two aromatic 
rings (R), one hydrophobic group (H), and one positively charg-
ed group (P). A total of 1060 hypotheses were obtained by those 
six features pharmacophores. These hypotheses were scored 
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Table 3. Statistical data for CoMSIA models using different alignment
methods

Component
CoMSIA

Alignment 1 Alignment 2 Alignment 3
2q a 0.521 0.572 0.781
2r b 0.790 0.912 0.955
2
predr c 0.745 0.501 0.758
2

bootr d 0.824 0.947 0.964
2

5CVr e 0.375 0.527 0.747
2

10CVr f 0.484 0.542 0.702
PLS componentsg 3 5 6
F valueh 32.589 49.751 82.291
SEEi 0.195 0.131 0.095
Field Contribution:
Steric 0.043 0.159
Electrostatic 0.442 0.552 0.196
Hydrophobic 0.196 0.289 0.243
Donor 0.320 0.334
Acceptor 0.228

acorrelation coefficient of leave-one-out cross validation. bnon-crossva-
lidated correlation coefficient. cpredictive correlation coefficient to the test
set. daverage of correlation coefficient after 100 bootstrapped run. eAverage
cross-validated correlation coefficient for 10 runs using 5 cross-validation
groups. fAverage cross-validated correlation coefficient for 10 runs using
10 cross-validation groups. gOptimal number of principal components. 
hRatio of r2 explained to unexplained  =  r2/(1 - r2). iStandard error of esti-
mate.

Table 4. Summary of the PLS analyses by receptor guided alignment using different CoMSIA field combinations 

CoMSIA fielda 2q Nb 2r SEE F value
contributions

S E H D A

S ‒0.024 1 0.164 0.374 5.505 1
E ‒0.118 1 0.078 0.393 2.358 1
H 0.127 1 0.339 0.333 14.379 1
D 0.104 1 0.275 0.349 10.600 1
A 0.102 2 0.378 0.329 8.203 1

SEHD 0.157 5 0.783 0.206 17.303 0.084 0.297 0.343
SEHA 0.144 5 0.835 0.180 24.205 0.137 0.262 0.366 0.235
SEDA 0.690 7 0.918 0.132 35.248 0.149 0.312 0.382 0.290
SHDA 0.744 5 0.947 0.102 86.145 0.097 0.231 0.382 0.290
EHDA 0.781 6 0.955 0.095 82.291 0.196 0.243 0.334 0.228

SEHDA 0.721 6 0.953 0.098 77.809 0.077 0.183 0.211 0.316 0.213
aAbbreviations: S(steric), E (electrostatic), H (hydrophobic), D (hydrogen bond donor), A (hydrogen bond acceptor) bNumber of principal components.

by a set of active compounds with a pIC50 value greater than 6, 
and 54 highly ranked hypotheses were retained. Using each hy-
pothesis, we tried building a 3D QSAR model by partial least- 
squares regression. Out of the 54 hypotheses, 13 hypotheses-
showed greater than 0.5 of 2q . We selected the hypothesis that 
showed the highest 2q  value, and employed those alignments to 
perform the CoMSIA analysis. However, the result did not show 
good CoMSIA statistics. Thus, we exported each alignment of 
compounds by each pharmacophore hypothesis to SYBYL, and 

carried out the CoMSIA PLS calculation, one by one. Finally, 
the best CoMSIA PLS result was obtained from the alignment 
by the pharmacophore hypothesis ID number 15 (Fig. 3), which 
also gave a perfect fitness score (3.0) to the most active com-
pound. This model showed a 2q  of 0.572 and a 2r  of 0.912 in 
CoMSIA statistics (Table 3). The highest 2q  was obtained by 
the combination of steric, electrostatic, and hydrophobic fields. 

When ligands bind to a receptor, the global minimum con-
formation may not be the best conformation. This is because 
ligands need some degree of torsional freedom to accommodate 
themselves to the receptor-binding site for lowering the energy 
of a drug-receptor complex.54 For that phenomenon, docked 
conformation of structure also has been employed when aligning 
compounds in the 3D QSAR. Besides, studies have shown that 
receptor-guided alignment produced better results than those 
from a ligand-based approach due to its more realistic informa-
tion about the receptors.55,56 Therefore, we adopted a receptor- 
guided alignment by employing the docked conformation of 
the most active compound (Fig. 2C). The docking pose of com-
pound 2 by Glide XP was shown in Fig. 4 and its Gscore value 
was ‒8.28. Third CoMSIA model was derived based on this con-
formation. The model shows that its 2q  and 2r  were 0.781 and 
0.955, respectively. Carrying out 31 possible combinations of 
descriptors (Table 3, 4), electrostatic, hydrophobic, H-bond 
donor, and acceptor fields showed the best result. 

We applied the linear interaction energy (LIE) method to 
predict the binding affinity of aligned compounds generated 
by the receptor guided alignment for the sake of the validation 
of this approach. After generating the model by multiple linear 
regression, we detected three compounds (compound 9, 15, and 
26) presenting large residuals. Two compounds out of them 
showed greater than 6 µM of IC50 value (IC50 of compound 9 = 
6.58 µM and IC50 of compound 26 = 5.17 µM), which was re-
latively lower activity than that of others, and remaining com-
pound also showed greater than 4 µM of IC50 value (IC50 of com-
pound 15 = 4.3 µM). It was assumed that three compounds did 
not follow the docked pose of the most active compound due 
to its low activity. Removal of these three compounds resulted 
in a model with 2r  of 0.5131 and leave-one-out crossvalidated 
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Figure 5. Plots of the predicted versus experimental pIC50 data of the 
3D-QSAR from the CoMSIA model for the training and test sets; (A)
ligand based alignment, (B) pharmacophore based alignment and (C)
receptor guided alignment 

Figure 4. Docked structure of the most active compound into the hERG
channel pore of homology model. The most active compound was 
represented by stick format ; residues involved in hydrogen bonding 
interaction (Ser 624) and hydrophobic interaction (Tyr 652, Phe 656)
were displayed using a line format. For the sake of clarity, only two 
monomers (B, D) among the tetramers were displayed.

2r  of 0.3435. Although the obtained statistical result is quite 
lower than that of the CoMSIA models, the 2q  of greater than 
0.3 with 2r  of greater than 0.5 is also considered a meaningful 
correlation between dependant and independent variables.57,58 
Therefore, this calculation suggests that there is linear relation-
ship between pIC50 of experimental hERG blocking activity 
and calculated binding interaction energy from the geometry 
of aligned compounds based on the most active compound 
and insures reliable process of receptor guided alignment. Fig. 6 
shows the linear relationship between the predicted and experi-
mental pIC50 by the LIE method

Validation of CoMSIA Model & Model Selection. The pre-
dictive 2r  of external test set, bootstrapped 2r , and leave-group- 
out crossvalidated 2r  were determined for validating the Co-
MSIA model. Eight compounds were selected for an external 
test set, and those were minimized, and aligned by a method 
similar to that of the training set. Then, activities were predicted 
by each CoMSIA model. The selected external test set yielded 
a 

2
predr  of 0.745, 0.501 and 0.758 by alignment 1, 2,and 3, res- 

pectively, which implies that alignment 3 has the best external 
predictive power. In the case of 2

bootr , alignment 3 also showed 
the highest value, 0.964, followed by 0.947 for alignment 2 
and 0.824 for alignment 1. Further validation was carried out 
using leave-group-out crossvalidation. After ten running of 
leave-10%-out and leave-20%-out crossvalidation, the mean 
value by alignment 3 was found which was more stable and ro- 
bust than those of any other alignments: 2

10CVr  = 0.702  and 2
5CVr  = 

0.747. The results by other alignment methods are also summa-
rized in Table 3.

Since the CoMSIA model by alignment 3 showed the best 
result in all validation criteria, indicating good internal predic-
tion as well as external predictive power of the model, we select-
ed this model for the analysis of the CoMSIA contour map. 
Fig. 5C depicts the graph of the experimental versus predicted 
activities for the training and test set of molecules by alignment 
3, and Table 4 shows the statistics of the combination of different 
fields to find the best CoMSIA model by alignment 3. 

CoMSIA Contour Map. The hydrophobic, H-bond donor & 
acceptor, and the electrostatic fields were generated by the 
best CoMSIA model, which is obtained by alignment 3. Each 

field was analyzed to find out the correlation between the activi-
ty trend and the structural modification. The contour map of all 
four fields is shown in Fig. 7, and the respective contour maps 
of the fields are shown in Fig. 8. Since the best model was ob-
tained by alignment 3, which employed the ligand binding site 
of the hERG receptor to generate the bioactive conformer, it is 
also worth while comparing those binding site with the CoMSIA 
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Figure 6. Plot of the experimental versus predicted pIC50 by multiple
linear regression using LIE-SGB descriptors. 

contour. The CoMSIA contour map was superimposed on the 
lipophilic potential map of the hERG channel cavity. This show-
ed an explainable matching each other and indicated usefulness 
of receptor guided alignment. The lipophilic potential was ge-
nerated, and displayed using the MOLCAD module in SYBYL 
(Fig. 9).

Hydrophobic Field. The contour map of the hydrophobic 
field for the model by alignment 3 is depicted in Fig. 8A. The 
contours in yellow and white (not shown) indicate regions where 
hydrophobic favorable groups increase and decrease activity, 
respectively. One large yellow contour in the 4,5-position of R1 
phenyl ring represents the region where the hydrophobic group, 
increases its activity. Therefore, the presence of the halogen 
group, which is hydrophobic, resulted in an increased activity. 
For example, compounds 6 (pIC50  = 6.4559), 7 (pIC50 = 6.5086), 
and 8 (pIC50 = 5.6498) with a -F in the 4 position of the R1 phenyl 
ring have much higher activity than compound 9 (pIC50 = 5.1818) 
with a -Br in the 3 position of the R1 phenyl ring in benzimida-
zole derivatives. Compound 7 (pIC50 = 6.5086) with a -F in the 4 
position also shows higher activity than compound  4 (pIC50 = 
6.2006) with no substituent in the 4,5-position and a -OCH3 
group in the 6-position. There are also some compounds in pip-
erazine derivatives following this trend. In the case of com-
pounds with high activity (e.g., compounds 27-36), they have a 
fluorine atom at the 4-position of the R1 phenyl ring, while less 
active compounds (e.g., compound 21-24) have no substituent 
at the 4,5-position of the R1 phenyl ring ; these compounds only 
have a bromine atom at the 3-position of R1 phenyl ring. Another 
example is shown when comparing compound 18 (pIC50 = 
5.8297) having a -Br in the 4 position with corresponding com-
pound 23 (pIC50 = 5.0878) having a -Br in the 3 position. Some-
times, it is observed that the activity deteriorated due to the oxy-
gen in the hydrophilic methoxy substituent falling into this hy-
drophobic-favorable region. For example, considering benzimi-
dazole derivatives, compound 1 (pIC50 = 5.5482) bearing metho-
xy group at the 4-position of the R1 phenyl ring has much less ac-
tivity than compounds 2 (pIC50 = 6.6778) and 4 (pIC50 = 6.2006) 
bearing the methoxy group at the 6-position, which is outside 
of the yellow contour. Compound 5 having methoxy at the 
3,4-position also showsquite less activity than compound 2 
and 4, which we can explain by above trend. This hydrophobic- 
favorable contour also shows the consistency with the 3D topo-
logy of the receptor. It is observed that the yellow polyhedron 
is hanging on the lipophilic potential map of Tyr 652 and Phe 
656 (Fig. 9). These two residues are known as critical hydrop-
hobic residues for hERG blockade.5 Therefore, the hydrophobic 
substituents falling this region will also have chances to interact 
with these residues through hydrophobic interaction or π-π 
interaction, which is known as important drug binding inter-
action in hERG channel.59

H-bond Donor & Acceptor Field. The H-bond donor and 
acceptor contour maps are shown in Fig. 8B. Contours in magenta 
and red (not shown) represent the H-bond acceptor favorable 
and unfavorable regions, while the cyan and purple contours 
depict the place where the H-bond donors are favorable and 
unfavorable, respectively. One big magenta-colored polyhedron 
and puple colored contour, which almost overlaps with the ma-
genta polyhedron,are located just above the structure. It indi-

cates that the H-bond acceptor moiety near this contour map 
in the structure leads to higher activity of compounds, while 
the H-bond donor moiety near this contour map in the structure 
causes lower activity of compounds. This hypothesis is support-
ed by the fact that the nitrogen atom of the benzimidazole moiety 
as the H-bond acceptor, oxygen atom in the CO2Me moiety, and 
the NH moiety in the linker chain near the magenta contour 
affects the inhibitory potency trend. For example, all of the com-
pounds having an inhibitory potency value below 1 µM of IC50 
value are benzimidazole derivatives (compounds 2, 4-7) and 
four out of the remaining six benzimidazole derivatives also 
show inhibitory potency value below 3 µM of IC50 value : com-
pound 1 (IC50 = 2.83 µM)  compound 3 (IC50 = 2.47 µM) com-
pound 8 (IC50 = 2.24 µM), and compound 14 (IC50 = 1.6 µM). 
Furthermore, comparing compound 11 with 38, both of which 
have a different scaffold compared to others- having NHCO 
linker and no CO2Me moiety-it is clear that compounds having 
a benzimidazole moiety is also of higher potency to hERG 
channel than compounds with a piperazine moiety. Only two 
compounds among benzimidazole derivatives have greater 
than 5 µM of IC50 value. Compound 9 (IC50 = 5.1818 µM) out of 
these two compounds have a benzoxazole moiety instead of a 
benzimidazole moiety. There is oxygen atom instead of nitrogen 
in benzoxazole, which resulted in the devoid of H-bond donor. 
We can observe that there is a small cyan contour located near 
this moiety representing the H-bond donor-favorable region. 
Therefore, it is explainable that the compound 9 has a relatively 
lower inhibitory potency. Other structural elements that contri-
bute to the formation of the magenta colored as well as the purple 
colored contours are the oxygen atom in the CO2Me moiety 
and nitrogen atom, which can act as an H-bond acceptor and 
donor in the NH linker region, respectively. This is supported 
by the following example. Comparing compound 38 with com-
pound 17, it is clear that compound 38-having a no CO2Me 
moiety and having a NHCO linker moiety-is less active. This 
is because compound 38 does not have oxygen as an H-bond 
acceptor near the magenta contour, and even has a nitrogen atom 
as an H-bond donor near the purple contour. Last but not the 
least, these two H-bond related fields show correlations with 
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Figure 9. The CoMSIA contour maps generated by the Receptor guided
alignment within the hERG channel pore (MOLCAD surfaces were 
generated around the hERG channel by the Fast Connolly type and 
Map Property as a Lipophilic Potential was calculated on that surface.
The color brown represents the most lipophilic region and the color blue
represents the most hydrophilic regions. For the sake of clarity, only the
residues involved in hydrogen bonding interaction and hydrophobic 
interaction of monomer B and D were displayed).
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Figure 10. (A) the Structure of Mibefradil (B) Mibefradil superimposed
to the CoMSIA contour plot of the best model

Figure 7. CoMSIA contour map (standard deviation × coefficient) of all
four fields with the template compound. The yellow and white (not 
shown) (80% and 20% contributions) contours indicates hydrophobic
favorable and unfavorable regions, the magenta and red (not shown) 
(80% and 20% contributions) contours represent H-bond acceptor 
favorable and unfavorable regions, the cyan and purple contours depict
H-bond donor favorable and unfavorable regions, while red and blue 
contours depict electronegative and electropositive regions.

(A) (B)

(C)

Figure 8. CoMSIA contour map (standard deviation × coefficient): (A)
hydrophobic field for compound 2 (yellow (80% contribution): hydrop-
hobic favorable; white (not shown, 20% contribution): hydrophobic 
unfavorable; (B) H-bond donor and acceptor field for compound 2 
illustrated as a capped stick form, compound 38 illustrated as a ball &
stick form (magenta (80% contribution): H-bond acceptor favorable;
red (20%, not shown): H-bond acceptor unfavorable; cyan (80% contri-
bution): H-bond donor favorable; purple (20% contribution): H-bond
donor unfavorable); (C) Electrostatic field for compound 2 colored in
yellow, compound 29 colored in atom type (blue (80% contribution):
negative potential unfavorable; red (20% contribution): negative po-
tential favorable)

the lipophilic potential map of the hERG channel. The magenta 
and purple colored contours which appear toward the blue lipo-
philic potential region indicate the existence of a polar region in 
the hERG channel pore, which is characterized by polar residues 
Ser 624 near the pore helix.1 A site-directed mutagenesis app-
roach revealed that Ser 624 was also a key residue in the hERG- 

ligand binding, and that this residue interacted with the polar 
regions of many hERG blockers.1,4,10,60,61 Therefore, the CoM-
SIA H-bond acceptor and donor fields suggest a good consis-
tency for those biological factors. 

Electrostatic Field. The electrostatic field contour is presented 
in Fig. 8C. The blue contour represents the regions where the 
positive potential is favorable to activity, while the red (not 
shown) depicts the negative potential favorable site. It is obs-
erved that one blue colored three dimentional isopleth is dis-
tributed from the nitrogen of the piperazine moiety to the 6- 
position of the N-phenyl ring in the R5 substituent. Therefore, 
this contour can explain the fact that any electronegative sub-
stituents in the 6-position of the N-phenyl ring in the relevant 
compounds can make the inhibitory potency less than their 
corresponding unsubstituted or electropositive substituted 
analogues at this position. For example, the introduction of F 



In silico Analysis on hERG Channel Blocking Effect Bull. Korean Chem. Soc. 2011, Vol. 32, No. 1      261

(pIC50 = 5.2856) and OCH3 (pIC50 = 5.068) to the 6 position of 
the phenyl ring (compounds 26 and 38) gives lower inhibitory 
potency than the 3-methoxy and 4-methoxy substituted com-
pounds 29 (pIC50 = 5.7959) and 30 (pIC50 = 5.8894). Another 
small polyhedron exists on a hydrogen atom of the CH2 linker 
next to a nitrogen atom of piperazine. This means that the elec-
tronegative group falling in this region will decrease the inhi-
bitory potency. For example, it is found that compound 10 
(pIC50 = 5.1759) exhibits the least inhibitory potency among 
benzimidazole derivatives. This is because though it has a benz-
imidazole moiety suggesting increased inhibitory potency, the 
oxygen substituent falls exactly at this position. Compound 37 
(pIC50 = 4.909), which is found to be the least active among all 
data sets, also bears a oxygen atom next to a piperazine nitrogen 
atom. 

We also predicted the hERG blocking activity of Mibefradil. 
The predicted pIC50 value and corresponding residual were 
5.980 and 0.135, respectively. The selected model resulted in 
predicted pIC50 value that slightly deviated from the experi-
mental pIC50 (pIC50 = 5.845), but the difference is statistically 
acceptable when considering the standard error of estimate of 
the external test set, which is 0.197. Fig. 10B shows the structure 
of the Mibefradil mapped to the contour of the best CoMSIA 
model. Its high inhibitory potency to the hERG channel is de-
monstrated by the fact that the Fluoro substituent in the benzene 
ring of the tetrahydronaphthalene moiety falls into the yellow 
region where hydrophobic group increases the inhibitory po-
tency, and the oxygen atom of methoxy in the carbonyl group 
is located inside the magenta colored polyhedron where the 
H-bond acceptor group increases the inhibitory potency. Other 
two oxygen atoms in the carbonyl group are also located near 
this contour map. Therefore, to avoid the hERG blocking acti-
vity of this compound, those structures mentioned above need 
to be changed.

Conclusions

The 3D QSAR model predicting the hERG blocking activity 
was developed using CoMSIA methodology. Different align-
ment approaches were tested to find a suitable method : a ligand 
based alignment  a pharmacophore model based alignment  and 
a receptor guided alignment. The receptor guided alignment 
showed the most significant performance for all statistical 
values : q2 r2 2

predr  2
bootr  2

5CVr  and 2
10CVr . Subsequent binding 

free energy calculations further rationalized the geometry of 
the training and test sets from the receptor-guided alignment. 
The CoMSIA contour map also showed a good correlation with 
the lipophilic potential map of the hERG channel pore. These 
findings led us to conclude that the CoMSIA method with 
receptor-guided alignment produced more reliable output than 
the other two alignment methods, and was more suitable to 
our data sets for hERG blocking predictions. The CoMSIA 
descriptor fields also suggested structural requirements to 
mitigate the hERG blockade effect in what follows: being 
devoid of hydrophobic substituents at the meta and para position 
of the R1 phenyl ring, the carbonyl group together with the me-
thoxy substituent bearing the oxygen atoms, which may act as 
H-bond acceptors, the benzimidazole moiety bearing the nitro-

gen atom, which may act as an H-bond acceptor and the electro-
positive substituents being located at the 6-position of the N- 
phenyl ring in the R5 substituent. Thus, our CoMSIA models 
can be used when modifying the T-type calcium channel block-
ers determined to be hERG blockers or when designing T-type 
calcium channel blockers to mitigate the hERG blockade effect 
at the first stage of drug development. 
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