• Title/Summary/Keyword: h-shaped steel

Search Result 138, Processing Time 0.025 seconds

Structural Behavior of Reinforced Concrete Slab Rigid-frame Bridge with H-Shaped Steel Girders

  • Nakai, Yoshiaki;Ha, Tuan Minh;Fukada, Saiji
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1219-1241
    • /
    • 2018
  • This study aims towards the improvement of a reinforced concrete rigid-frame bridge in an effort to reduce the construction and maintenance costs, and achieve an improved seismic performance. Correspondingly, a new structural rigid connection is proposed for H-shaped steel girders and reinforcing bars at the corner of the rigid-frame structure. Both experiments and numerical analyses were performed. Prototype models were constructed and subjected to static loading tests to reveal their load-carrying capacity and failure mode. Numerical models were then developed using finite elements to evaluate the experimental results. Analyses elicited good agreement between simulation and experimental data and validated the numerical models. Moreover, the validity of the proposed rigid connection was confirmed, and the failure behavior was clarified. Finally, a full-size model of the reinforced concrete rigid-frame bridge with H-shaped steel girders was constructed and subjected to destructive loading tests to evaluate structural integrity of the proposed rigid connection.

Measurement and assessment of imperfections in plasma cut-welded H-shaped steel columns

  • Arasaratnam, P.;Sivakumaran, K.S.;Rasmussen, Kim J.R.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.531-555
    • /
    • 2006
  • H-shaped welded steel column members are fabricated by welding together pre-cut flanges and the web. Modern fabricators are increasingly using plasma-cutting technique instead of traditional flame cutting. Different fabrication techniques result in different degrees of geometric imperfections and residual stresses, which can have considerable influence on the strength of steel columns. This paper presents the experimental investigation based temperature profiles, geometric imperfections, and built-in residual stresses in plasma cut-welded H-shaped steel column members and in similar flame cut-welded H-shaped steel columns. Temperature measurements were taken during and immediately after the cutting operations and the welding operations. The geometric imperfections were established at closely spaced grid locations on the original plates, after cutting plates into plate strips, and after welding plate strips into columns. Geometric imperfections associated with plasma cut element and members were found to be less than those of the corresponding elements and members made by flame cutting. The "Method of Section" technique was used to establish the residual stresses in the plate, plate strip, and in the welded columns. Higher residual stress values were observed in flame cut-welded columns. Models for idealized residual stress distributions for plasma cut and flame cut welded sections have been proposed.

Axial load-strain relationships of partially encased composite columns with H-shaped steel sections

  • Bangprasit, Papan;Anuntasena, Worakarn;Lenwari, Akhrawat
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.51-66
    • /
    • 2022
  • This paper presents the axial compression behavior of partially encased composite (PEC) columns using H-shaped structural steel. In the experimental program, a total of eight PEC columns with H-shaped steel sections of different flange and web slenderness ratios were tested to investigate the interactive mechanism between steel and concrete. The test results showed that the PEC columns could sustain the load well beyond the peak load provided that the flange slenderness ratio was not greater than five. In addition, the previous analytical model was extended to predict the axial load-strain relationships of the PEC columns with H-shaped steel sections. A good agreement between the predicted load-strain relationships and test data was observed. Using the analytical model, the effects of compressive strength of concrete (21 to 69 MPa), yield strength of steel (245 to 525 MPa), slenderness ratio of flange (4 to 10), and slenderness ratio of web (10 to 25) on the interactive mechanism (Kh = confinement factor for highly confined concrete and Kw = reduction factor for steel web) and ductility index (DI = ratio between strain at peak load and strain at proportional load) were assessed. The numerical results showed that the slenderness of steel flange and yield strength of steel significantly influenced the compression behavior of the PEC columns.

An Experimental study on the Structural Performance by the Depth Variation of Capacity of U-shaped composite Beam (U-형 복합보의 춤 변화에 따른 구조성능에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.111-118
    • /
    • 2020
  • The U-shaped composite beam used in this study consist of a reinforced concrete structure, a beam steel structure supporting the slab, a reinforced concrete structure, and a U-shaped steel plate. The U-shaped composite beam was developed for the purpose of using it as a parking lot because it is highly constructible and has low floor height and long span. For the improvement of constructivity, the U-shaped composite beam ends are planned with standardized H-shaped steel and connected directly to the columns, and the middle of the U-shaped composite beam consists of U-shaped steel plates folded in U-shaped form using thin steel plates (t=6) instead of H-shaped steel. In the middle of the composite beam, where U-shaped steel plates are located, the depth of U-shaped beam may be planned to be small so as to satisfy the height limit of the parking lot. It is important to grasp the structural performance according to the change of depth because low beam depth is advantageous for the reduction of the floor height, but it is a inhibitor to the structural behaviors of U-shaped composite beam. In addition, since U-shaped composite beams are a mixture of steel frame structures, reinforced concrete structures and U-shaped steel plates, securing unity has a great influence on securing structural performance. Therefore, in this study, a structural experiment was conducted to understand the structural performance according to the depth change for U-shaped composite beam. A total of three specimens were planned, including two specimens that changed the depth using a criteria specimen planned for a general parking lot. The results of the experiment showed that the specimens who planned the depth greatly had better structural performance such as yield strength, maximum strength, and energy than the standard specimen.

Experimental research on load-bearing capacity of cast steel joints for beam-to-column

  • Han, Qinghua;Liu, Mingjie;Lu, Yan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.67-83
    • /
    • 2015
  • The load transfer mechanism and load-bearing capacity of cast steel joints for H-shaped beam to square tube column connection are studied based on the deformation compatibility theory. Then the monotonic tensile experiments are conducted for 12 specimens about the cast steel joints for H-shaped beam to square tube column connection. The findings are that the tensile bearing capacity of the cast steel joints for beam-column connection depends on the ring of cast steel stiffener. The tensile fracture happens at the ring of the cast steel stiffener when the joint fails. The thickness of square tube column has little influence on the bearing capacity of the joint. The square tube column buckles while the joint without concrete filled, but the strength failure happens for the joint with concrete filled column. And the length of welding connection between square tube column and cast steel stiffener has little influence on the load-bearing capacity of the cast steel joint. Finally it is shown that the load-bearing capacity of the joints for H-shaped beam to concrete filled square tube column connection is larger than that of the joints for H-shaped beam to square tube column connection by 10% to 15%.

Rotational capacity of H-shaped steel beams under cyclic pure bending

  • Jia, Liang-Jiu;Tian, Yafeng;Zhao, Xianzhong;Tian, Siyuan
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.123-140
    • /
    • 2019
  • This paper presents experimental study on effects of width-to-thickness ratio and loading history on cyclic rotational capacity of H-shaped steel beams subjected to pure bending. Eight Class 3 and 4 H-shaped beams with large width-to-thickness ratios were tested under four different loading histories. The coupling effect of local buckling and cracking on cyclic rotational capacity of the specimens was investigated. It was found that loss of the load-carrying capacity was mainly induced by local buckling, and ductile cracking was a secondary factor. The width-to-thickness ratio plays a dominant effect on the cyclic rotational capacity, and the loading history also plays an important role. The cyclic rotational capacity can decrease significantly due to premature elasto-plastic local buckling induced by a number of preceding plastic reversals with relative small strain amplitudes. This result is mainly correlated with the decreasing tangent modulus of the structural steel under cyclic plastic loading. In addition, a theoretical approach to evaluate the cyclic rotational capacity of H-shaped beams with different width-to-thickness ratios was also proposed, which compares well with the experimental results.

Bond Strength between Concrete and Steel and Shear Behavior of Shear Connectors of H-shaped Steel Encased Composite Columns (H형강 매입형 합성기둥의 부착강도 및 전단연결재의 전단거동)

  • Wang, Ning;Lee, Hye Lim;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.377-387
    • /
    • 2017
  • The objective of this study is to investigate the influence that how does contact surface between concrete and steel influence the steel encased composite column by push-out test. Also nominal bond stress indicated by design standard such as Eurocode 4 is underestimated in small scale steel encased composite column. The other objective of this study is to investigate how does the number and space of shear connector influence the H-shaped steel encased composite column. The shear behavior of shear connectors is investigated by push-out test.

Experimental Study on Structural Performance of End-reinforced Steel-beam system(Eco-girder) (단부 보강한 합성보(에코거더)시스템의 구조성능에 관한 실험적 연구)

  • Chae, Heung-Suk;Ryoo, Jae-Yong;Chung, Kyung-Soo;Moon, Young-Min;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.533-541
    • /
    • 2010
  • H-shaped beams, which are constructed between columns, are used widely as slaves in steel structures. The bending moments that occur on both ends of an H-shaped beam, however, are about twice the bending moment that occurs at the center of the H-shaped beam. Because such beam is designed with maximum bending moment, it is deeper and has smaller spaces. To improve these features, if both ends of an H-shaped beam that have maximum bending moments are merely reinforced, the beams could be designed by the bending moment at the center of the H-shaped beam. To analyze the structural performance of the proposed end-reinforced beams (eco-girders). Four specimens were prepared with the following parameters: end-reinforced steel plate, reinforced bars, and reinforced studs and experimental tests of the specimens were performed.

Shear mechanism and bearing capacity calculation on steel reinforced concrete special-shaped columns

  • Xue, J.Y.;Chen, Z.P.;Zhao, H.T.;Gao, L.;Liu, Z.Q.
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.473-487
    • /
    • 2012
  • An experimental study was performed to investigate the seismic performance of steel reinforced concrete (SRC) special-shaped columns. For this purpose, 17 steel reinforced concrete special-shaped column specimens under low-cyclic reversed load were tested, load process and failure patterns of the specimens with different steel reinforcement were observed. The test results showed that the failure patterns of these columns include shear-diagonal compression failure, shear-bond failure, shear-flexure failure and flexural failure. The failure mechanisms and characteristics of SRC special-shaped columns were also analyzed. For different SRC special-shaped columns, based on the failure characteristics and mechanism observed from the test, formulas for calculating ultimate shear capacity in shear-diagonal compression failure and shear-bond failure under horizontal axis and oblique load were derived. The calculated results were compared with the test results. Both the theoretical analysis and the experimental results showed that, the shear capacity of T, L shaped columns under oblique load are larger than that under horizontal axis load, whereas the shear capacity of +-shaped columns under oblique load are less than that under horizontal axis load.

A Buckling Characteristics of Single-Layer Lattice Domes according to Section Shapes of Main Frames (The Existing Domestically-Produced Structural Steel is used as Main Frames) (단층래티스 돔의 주부재 단면형상에 따른 좌굴특성 검토 (KS규격 기성 강재 사용을 기준으로 함))

  • Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.4
    • /
    • pp.75-81
    • /
    • 2013
  • The circular hollow section is usually used for member of main frame to carry the external load in single layer lattice dome. But, the H-shaped section may be used for member of main frame since it is convenient for attaching roof panels. Single layer lattice domes have various buckling characteristics, such as the overall buckling, the member buckling, and nodal buckling. The purpose of this study is to compare buckling characteristics of single-layer lattice domes in which the H-shaped steel section as the existing domestically-produced structural steel is used as main frames to those of domes in which a circular hollow section is used as main frames.