• Title/Summary/Keyword: gyroscopic moments

Search Result 9, Processing Time 0.027 seconds

Estimation of Axial Displacement in High-speed Spindle Due to Rotational Speed (회전속도에 따른 고속 스핀들의 돌출량 예측에 관한 연구)

  • Bae, Gyu-Hyun;Lee, Chan-Hong;Hwang, Joo-Ho;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.671-679
    • /
    • 2012
  • This paper presents an estimation procedure for axial displacement in spindle equipped with angular contact ball bearings due to rotational speed. High-speed spindle-bearing system experiences axial displacement due to thermal expansion and rotational speed-dependent characteristics of angular contact ball bearings. This paper deals with the axial displacement caused by the rotational speed-dependent effects such as centrifugal force and gyroscopic moments. To this end, a bearing dynamic model is established that includes all the static and dynamic properties of angular contact ball bearing. An analytical formula to calculate the axial displacement based on contact angles between ball and races is derived to discuss the physics regarding the axial displacement in spindle. The proposed dynamic model is compared with a reference and a commercial program. Numerical examples are presented to show the effects of centrifugal force and gyroscopic moment on the axial displacement. The proposed model is also validated with an experimental result.

Vibration Analysis of Shaft-Bladed Disk Systems (축-익 붙임 원판 계의 진동해석)

  • 전상복
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.99-111
    • /
    • 1998
  • An analytical method using the substructure synthesis and assumed modes method is developed to investigate the effect of flexibility of bladed disk assembly on vibrational modes of flexible rotor system. In modeling the system, Coriolis forces, gyroscopic moments, and centrifugal stiffening effects are taken into account. Then the coupled vibrations between the shaft and bladed disk are extensively investigated using simplistic models, as the shaft rotational speed and the pretwist and stagger angles of blade are varied.

  • PDF

Stability analysis of pump using finite element method (유한요소법에 의한 펌프축계의 안정성해석)

  • 양보석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.31-40
    • /
    • 1986
  • With the tendency toward high speed and high pressure in centrifugal pumps, the problem of sub-synchronous vibration has arisen, caused by the hydraulic forces of the working fluid, such as wearring, balance piston, impeller, etc.. These forces can drastically alter the rotor critical speeds and stability characteristics, and can be acted significant destabilizing forces. For preventing such self-excited vibration, the desing of the rotor system needs, which would secure the stability of the machine. In this paper, a procedure is presented for dynamic modeling of rotor-bearing-seal-impeller systems which consist of rigid disks, distributed parameter finite rotor elements and discrete bearings, seals and impellers. A finite element model including the effects of rotatory inertia and gyroscopic moments is developed using the consistent matrix approach. The technique of dynamic matrix reduction is applied to the shaft matrices to reduce them to a set of matrices of dynamic of significantly fewer degrees of freedom. The representation of bearing, seal and impeller elements is in term of linearized stiffness and damping matrices by reasonably small perturbations from equilibrium. The stability behavior of a typical double suction centrifugal pump is presented. Results show the influence of clearance and flow conditions on running speeds and stability characteristics.

  • PDF

Vibration Analysis of Rotor Systems Using Finite Dynamic Elements (동적 유한요소에 의한 회전축 계의 진동 해석)

  • 양보석;황형섭
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.467-475
    • /
    • 1997
  • A rotor-bearing system has been investigated, including internal damping and axial torque using finite dynamic elements. A procedure is presented for dynamic modeling of rotor-bearing system which consist of finite dynamic shaft elements, rigid disk, and bearing and seal. A finite dynamic element model including the effects of rotatory inertia, gyroscopic moments, axial force, and axial torque is developed using the frequency dependent shape function. The natural whirl speeds, stability, and unbalance response of rotor system are calculated on several cases and compared with the conventional finite elements.

  • PDF

Attitude Control of a Quad-rotor using CMG (CMG를 이용한 쿼드-로터의 자세제어)

  • Oh, Kyung-Hyun;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.695-700
    • /
    • 2014
  • In this paper, we utilize the CMG's momentum bias to control the roll/pitch attitude of the Quad-rotor. While the previous control approaches have used the thrust control approach, we design and add a new momentum controller (using CMG) in order to improve the transient response over the existing methods. The focal point of this paper is the design of a controller for a Quad-rotor's attitude using CMG. This leads to other tasks such as an identification of the model's parameters and mathematical nonlinear modeling. Then, the previous thrust controller is designed based on the linearized model. Finally, the overall system with our designed controller is implemented and tested in real time to show that the Quad-rotor is kept in a good balanced position faster than the traditional thrust-only control approach.

Dynamic Characteristics Analysis of Rotor-Bearing System with Support Structures (지지구조물을 고려한 로터-베어링 시스템의 동 특성해석)

  • 박성훈;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.547-550
    • /
    • 1997
  • The dynamic behavior of rotor-bearing system has been investigated using finite element method. A procedure is presented for dynamic modeling of rotor-bearing system which consist of shaft elements, rigid disk, flexible bearing and support structures. A finite element model including the effects of rotary inertia, shear deformation, gyroscopic moments is developed. Linear stiffness and damping coefficient are calculated for 3 lobe sleeve bearing. The whirl frequency, mode shape, stability and unbalance response of rotor system included effect of bearing coefficient and support structures are calculated.

  • PDF

Effects of Blade Shape on the Dynamics of Turbo-machinery (깃 형상이 터보기계의 동특성에 미치는 영향)

  • 전상복
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.477-484
    • /
    • 1998
  • An analytical procedure on the base of the substructure synthesis and assumed modes method is developed to investigate the flexibility effect of bladed disk assembly on vibrational modes of flexible rotor system. In modeling the system, Coriolis forces, gyroscopic moments, and centrifugal stiffening effects are taken into account. The coupled vibrations between the shaft and bladed disk are then extensively investigated through the numerical simulation of simplified models, with varying the shaft rotational speed and the prewist and stagger angles of the blade. It is found that the Coriolis and inertia forces and the inertia torque, which are induced by the one nodal diameter modes of the bladed disk and vary depending upon the stagger and prewist angles, lead to the coupled motions of the shaft and the bladed disk.

  • PDF

A Study on the Vibration Characteristics of Rotor System with Fluid Film Bearing (유막 저어널 베어링이 회전체에 미치는 진동 특성에 관한 연구)

  • Park, Seong-Hwan;O, Taek-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.37-44
    • /
    • 2002
  • The dynamic behavior of rotor-bearing system has been investigated using finite element method. A procedure is presented for dynamic modeling of rotor-bearing system which consists of shaft elements, rigid disk, flexible bearing and support structure. A finite element model including the effects of rotary inertia, shear deformation, gyroscopic moments is developed. Linear stiffness and damping coefficients are calculated for 2 lobe sleeve bearing. The whirl frequency, mode shape, stability and unbalance response of rotor system including effects of bearing coefficient and support structures are calculated.

Effects of Stagger and Pretwist Angles on the Vibration of Flexible Shaft-Bladed Disk Systems (탄성 축-익 붙임 원판 계의 진동에 있어서 엇각 및 비틀림각의 영향)

  • 전상복;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.101-109
    • /
    • 1997
  • An analytical procedure on the base of the substructure synthesis and assumed modes method is developed to investigate the flexibility effect of bladed disk assembly on vibrational modes of flexible rotor system. In modeling the system, Coriolis forces, gyroscopic moments, and centrifugal stiffening effects are taken into account. The coupled vibrations between the shaft and bladed disk are then extensively investigated through the numerical simulation of simplified models, with varying the shaft rotational speed and the pretwist and stagger angles of the blade. It is found that the Coriolis and inertia forces and the inertia torque, which are induced by the one nodal diameter modes of the bladed disk and vary depending upon the stagger and pretwist angles, lead to the coupled motions of the shaft and the bladed disk.

  • PDF