• 제목/요약/키워드: gyroscopic effect

검색결과 53건 처리시간 0.021초

외바퀴 로봇의 역자이로 효과에 의한 바디 모션과 김벌 모션의 실험을 통한 관계 분석 (Analysis of Relationship between Body and Gimbal Motion Through Experiment of a Single-wheel Robot Based on an Inverse Gyroscopic Effect)

  • 이상덕;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제21권11호
    • /
    • pp.1064-1069
    • /
    • 2015
  • Control Moment Gyro (CMG) has been used as an indirect actuator of a single-wheel robot system GYROBO, developed at Chungnam National University. The flip motion of the gimbal system produces the gyroscopic motion onto the body system while the body motion also produces the gyroscopic motion onto the gimbal system inversely. In this paper, the intuitive equation of the inverse gyroscopic effect is derived as the direct relation between the rate of the body system and the rate of the gimbal system. Experiments on the inverse gyroscopic effect under the chaotically generated disturbance are conducted. Experimental data are approximated by a linear equation using the least square method.

자이로 스코프 효과를 고려한 밀링 채터 안정성 해석 (Milling Chatter Stability Analysis in Consideration of Gyroscopic Effect)

  • 박재현;홍성욱;김현수;박중윤
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.58-63
    • /
    • 2000
  • The dynamics of spindle-bearing-workpiece system significantly affects the cutting condition and stability in milling process. The present paper investigates the chatter stability of milling process due to the change in the dynamics of spindle-bearing-workpiece systems. In particular, the present paper focuses on chatter stability due to the presence of gyroscopic effect. An eigenvalue problem approach to the stability of milling process is extensively used in this paper. To incorporate the rotational speed dependent gyroscopic effect, an iterative algorithm is proposed. A numerical example is provided for examining the chatter stability problem in the presence of gyroscopic effects.

  • PDF

자이로 효과의 피칭 모션을 고려한 한 바퀴 로봇의 모델 기반 롤링 모션 제어 (Model-Based Rolling Motion Control of an One-wheeled Robot Considering the Pitching Motion of a Gyroscopic Effect)

  • 이상덕;정슬
    • 전기학회논문지
    • /
    • 제65권2호
    • /
    • pp.335-341
    • /
    • 2016
  • In general, a yawing motion concept is used for the lateral control of one wheel robot where the gimbal system is located horizontally. In this paper, another concept of the vertically located gimbal system is presented for the same purpose. Although the vertical concept undergoes an instability more easily than the horizontal one, the pitching motion of the gyroscopic effect is considered. Firstly, the trade-off relation between two balancing concepts are investigated by comparing the gyroscopic mechanism. Secondly, the dynamic model for the problem of the proposed concept is derived using the oscillatory inverted stick model. Thirdly, the stability of the model is analyzed using the phase trajectory method. Finally, the control performance of the system by a vibration controller is simulated.

회전기계-기초의 상호작용을 고려한 지진해석 (Seismic Anslysis of Rotating Machine-Foundation System)

    • 한국지진공학회논문집
    • /
    • 제2권2호
    • /
    • pp.1-12
    • /
    • 1998
  • 여섯 성분의 지진에 의한 지반속도를 받는 회전기계-기초시스템의 거동을 해석하기 위해 회전기계-기초시스템을 회전원판, 회전축, 윤활유막 베어링, 주각, 그리고 뼈대기초로 구성된 것으로 이상화한다. 이때 회전기계-기초의 동적거동을 나타내는 지배운동방정식은 Gyroscope 효과와 Coriolis 효과, 윤활유막의 동적특성 그리고 지반의 병진과 회전거동을 고려하여 얻는다. 지반의 회전거동, Gyroscope 효과, 그리고 Coriolis 효과들이 회전기계-기초시스템의 전체거동에 미치는 영향을 해석예젤르 통해 고찰한다. 해석결과 회전기계-기초시스템의 지진해석에 있어서 지반의 회전거동 성분과 Gyroscope 효과의 영향을 포함하여야함을 알 수 있다.

  • PDF

외란관측기에 기초한 자기베어링시스템의 제어기 설계 (Observer-based Controller Design of a Magnetic Bearing System)

  • 송상호;박영진;정성종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.470-473
    • /
    • 1995
  • There exist two critical in application of the magnetic bearing system. One is the control axis interference caused by gyroscopic effect and the other is the vibration caused by the unbalance on the rotor. To solve both problems at the same time, first, a centralized full-state feedback controller based on the LQR control theory was designed to compensate for the gyroscopic effect. Second, disturbance rejection control input based on the observer was designed to avoid the vibration causer by the unbalanced rotor. Balancing input computer accroding to LQR and output of the observer were derived in term of rotational speed. Effectiveness of the on-line balancing was verified through numerical simulation. The developed observer-based controller was also applied to the linear and nonlinear magnetic bearing systems.

  • PDF

Parametric resonance of a spinning graphene-based composite shaft considering the gyroscopic effect

  • Neda Asadi;Hadi Arvin;Yaghoub Tadi Beni;Krzysztof Kamil Zur
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.457-471
    • /
    • 2024
  • In this research, for the first time the instability boundaries for a spinning shaft reinforced with graphene nanoplatelets undergone the principle parametric resonance are determined and examined taking into account the gyroscopic effect. In this respect, the extracted equations of motion in our previous research (Ref. Asadi et al. (2023)) are implemented and efficiently upgraded. In the upgraded discretized equations the effect of the Rayleigh's damping and the varying spinning speed is included that leads to a different dynamical discretized governing equations. The previous research was about the free vibration analysis of spinning graphene-based shafts examined by an eigen-value problem analysis; while, in the current research an advanced mechanical analysis is addressed in details for the first time that is the dynamics instability of the aforementioned shaft subjected to the principal parametric resonance. The spinning speed of the shaft is considered to be varied harmonically as a function of time. Rayleigh's damping effect is applied to the governing equations in order to regard the energy loss of the system. Resorting to Bolotin's route, Floquet theory and β-Newmark method, the instability region and its accompanied boundaries are defined. Accordingly, the effects of the graphene nanoplatelet on the instability region are elucidated.

한 바퀴로 구동하는 로봇 GYROBO에 대한 연구 (Research on a Single Wheeled Robot : GYROBO)

  • 김필교;김연섭;정슬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.255-257
    • /
    • 2007
  • In this paper, we develop a single wheeled robot that has one wheel to move. The single wheel robot is similar to a rolling disk relying on gyroscopic motions to balance. The Gyrobo consists of three actuators: a spin motor, a tilt motor and a drive motor. The spin motor spins a flywheel at high rate so that it provides the balancing stability to upright the robot. The tilt motor controls steering of the robot by gyroscopic effect. The drive motor make forward accelerated motion to the robot. We have built and tested the Gyrobo to turn and move forward.

  • PDF

Design of a Fuzzy Compensator for Balancing Control of a One-wheel Robot

  • Lee, Sangdeok;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권3호
    • /
    • pp.188-196
    • /
    • 2016
  • For the balancing control of a one-wheel mobile robot, CMG (Control Moment Gyro) can be used as a gyroscopic actuator. Balancing control has to be done in the roll angle direction by an induced gyroscopic motion. Since the dedicated CMG cannot produce the rolling motion of the body directly, the yawing motion with the help of the frictional reaction can be used. The dynamic uncertainties including the chattering of the control input, disturbances, and vibration during the flipping control of the high rotating flywheel, however, cause ill effect on the balancing performance and even lead to the instability of the system. Fuzzy compensation is introduced as an auxiliary control method to prevent the robot from the failure due to leaning aside of the flywheel. Simulation studies are conducted to see the feasibility of the proposed control method. In addition, experimental studies are conducted for the verification of the proposed control.

조종날개가 장착된 탄도수정탄의 자이로안정성 및 항력 특성 연구 (Gyroscopic Stability and Drag Characteristics Study of Canard-Installed Course Correction Munition)

  • 배주현
    • 한국군사과학기술학회지
    • /
    • 제20권3호
    • /
    • pp.376-383
    • /
    • 2017
  • This paper describes the gyroscopic stability and the drag characteristics of the smart munition with a course correction fuze(CCF). A ballistic analysis was conducted to figure out the effect of the canards on the gyroscopic stability of the projectile. The analysis used the commercial ammunition performance evaluation software: Projectile Design and Analysis System(PRODAS). In particular, we compared the PRODAS analysis results to real field test results to investigate the influence of the CCF mounted projectile. In addition, some ballistic simulations were carried out to provide the conditions suitable for wind tunnel tests. Experimental results show that the added drag force by the canards is almost uniform regardless of the Mach number when the projectile is at the normal position where the angle of rotation and the angle of attack are both 0 degrees. However, as the angle of attack of the projectile increases, the additional drag force depends on the deflection of the canards.