• Title/Summary/Keyword: gyro sensor

Search Result 368, Processing Time 0.038 seconds

Implementation of the Hand-motion Recognition based Auxiliary Input Device using Gyro Sensor (자이로센서를 이용한 손 동작 인식형 보조 입력장치 구현)

  • Park, Ki-Hong;Lee, Hyun-Jik;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.503-508
    • /
    • 2009
  • In this paper, we have designed the auxiliary input device which based on hand-motion recognition. It is aimed at some individually specified person such as the disabled, rehabilitation patient, and the aged. The gyro sensor is used to recognize the hand-motion in 3D space, and communication bandwidth for transceiver is also set to the 2.4GHz. Prototype board includes a set of modules; Gyro sensor, RF transmitter/receiver, MCU for signal processing and USB connector etc. Some experiments are conducted so as to verify the prototype, and as a result, mouse-based curser motion as well as program control are well operated just same as the design specification.

  • PDF

Odometry error correction by Gyro sensor for mobile robot localization (이동로봇의 Localization을 위한 Gryo sensor에 의한 Odometry Error 보정에 관한 연구)

  • Park, Shi-Na;Ro, Young-Shick;Choi, Won-Tai;Hong, Hyun-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.597-599
    • /
    • 2005
  • To make the autonomous mobile robot move in the unknown space, we have to know the information of current location of the robot. So far, the location information that was obtained using Encoder always includes Dead Reckoning Error, which is accumulated continuously and gets bigger as the distance of movement increases. In this paper, we analyse the effect of the size of the two wheels of the mobile robot and the wheel track of them among the factors of Dead Reckoning Error. And after this, we compensate this Dead Reckoning Error by Kalman filter using Gyro Sensors. To accomplish this, we develop the controller to analyse the error components of Gyro Sensor and to minimize the error values. We employ the numerical approach to analyse the error components by linearizing them because each error component is nonlinear. And we compare the improved result through simulation.

  • PDF

Control Method of Mobile Robots for Avoiding Slip and Turnover on Sloped Terrain Using a Gyro/Vision Sensor Module (Gyro/Vision Sensor Module을 이용한 주행 로봇의 미끄러짐 및 넘어짐 회피 제어 기법)

  • Lee Jeong-Hee;Park Jae-Byung;Lee Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.669-677
    • /
    • 2005
  • This acticle describes the control method of mobile robots for avoiding slip and turnover on sloped terrain. An inexpensive gyro/vision sensor module is suggested for obtaining the information of terrain at present and future. Using the terrain information and the robot state, the maximum limit velocity of the forward velocity of the robot is defined fur avoiding slip and turnover of the robot. Simultaneously the maximum value of the robot velocity is reflected to an operator in the form of reflective force on a forte feedback joystick. Consequently the operator can recognize the maximum velocity of the robot determined by the terrain information and the robot state. In this point of view, the inconsistency of the robot movement and the user's command caused by the limit velocity of the robot can be compensated by the reflective force. The experimenal results show the effectiveness of the suggested method.

Self localization of Indoor Mobile Robot Using IR Sensors (IR Sensors를 이용한 실내용 이동로봇의 자기위치 추정)

  • Ju, Chil-Gwan;Choe, Min-Hyeok;Yu, Yeong-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.15-18
    • /
    • 2007
  • 이 논문에서는 Encoder, Gyro, 다수의 IR센서를 이용한 실내용 이동로봇의 자기위치 추정에 관한 방법 중 첫 번째 실험으로 다수의 IR센서로부터 획득한 거리데이터를 이용하여 작성한 환경지도에서 모서리를 검출하고, 이를 바탕으로 각 센서에서 측정된 데이터를 병합하도록 하였다. 마지막으로 얻어진 환경지도와 실제 환경을 비교하여 그 성능을 평가하였다.

  • PDF

A Study on the Attitude Determination of the KOMPSAT (다목적 실용 위성의 자세결정에 관한 연구)

  • Kim, Byung-Doo;Lee, Ja-Sung;Choi, Wan-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.474-477
    • /
    • 1997
  • In this paper, an efficient attitude determination algorithm based on the Kalman Filter which combines earth/sun sensor data with gyro data in a mutually compensating manner is presented. Quaternion is used as the attitude state to save computation time and to prevent the gimbal-lock situation associated with Euler angles. Gyro data allows the use of the kinematic equation instead of space vehicle's dynamic equation which is usually based on approximation of the actual dynamics and inaccurate torque information. The gyro data are used to propagate the attitude through kinematic equation and the earth/sun sensor data are used to update the attitude and estimate the gyro bias. Simulation results for the KOMPSAT attitude determination system are presented.

  • PDF

Quad Copter attitude control with gyro sensor and acceleration sensor (자이로센서와 가속도센서 결합을 통한 쿼드콥터의 자세 제어)

  • Yun, Byeung-Mo;Jeong, Jin-Hyuk;Ha, Seong-Woo;Kim, Kyung-Ho;Park, Jin-Yang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.111-112
    • /
    • 2013
  • 본 논문에서는 자이로 센서(Gyro Senor)와 가속도 센서(Accelerometer)를 이용하여 가속도(x")와 각 축의 각속도(${\theta}^{\prime}$)를 계산하여, 쿼드콥터와의 결합을 통해 자세를 스스로 제어하는 방법을 제안한다. 현재 나온 국내 외 쿼드콥터 기능의 현황과 그 제품들의 회로, 그리고 자이로센서와 가속도센서에 관한 논문들을 분석하여 자이로센서와 가속도센서를 통해 쿼드콥터의 성능을 향상시키는 방안을 제시하였다. 그 결과 센서결합을 통해 공중에서 비스듬하게 잡고있는 상황 등 기울어진 상태에서 스스로 자세를 제어하는 기능이 구현되었음을 확인할 수 있었다.

  • PDF

Implementation of Educational Two-wheel Inverted Pendulum Robot using NXT Mindstorm (NXT Mindstorm을 이용한 교육용 이륜 도립진자 로봇 제작)

  • Jung, Bo Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.127-132
    • /
    • 2017
  • In this paper, we propose a controller gain based on model based design and implement the two-wheel inverted pendulum type robot using NXT Lego and RobotC language. Two-wheel inverted pendulum robot consists of NXT mindstorm, servo DC motor with encoder, gyro sensor, and accelerometer sensor. We measurement wheel angle using bulit-in encoder and calculate wheel angle speed using moving average method. Gyro measures body angular velocity and accelerometer measures body pitch angle. We calculate body angle with complementary filter using gyro and accelerometer sensor. The control gain is a weighted value for wheel angle, wheel angular velocity, body pitch angle, and body pich angular velocity, respectively. We experiment and observe the effect of two-wheel inverted pendulum with respect to change of control gains.

An Attitude Control and Stabilization of an Unstructured Object using CMG Subsystem (자이로 구동장치를 이용한 공중물체의 자세제어 및 안정화)

  • Lee, Geon-Yeong;Gwon, Man-O
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.459-466
    • /
    • 2000
  • In this paper, we propose an attitude controller for an unstructured object using CMG(Control Moment of Gyro) subsystem, which has a stabilizer function. The CMG subsystem consists of one motor for spinning the wheel and the other motor for turning the outer gimbal. While the wheel of CMG subsystem is spinning at high speed, applying force to the spin axis of the wheel leads the torque about the vertical axis. We utilize the torque to control the attitude of object in this study. For the stabilizer function, in additiion, holding the load at the current position, the power applied to the gimbal motor of CMG will be cut, which result in the braking force to stop the load by gyro effect. However, due to the gear reduction connected to outer gimbal, slow load motion cannot generate the braking force. Thus, in this study, we are willing to make a holding force by applying control power to the gimbal motor from the signal of piezoelectric gyroscopic sensor that detected the angular velocity of the load. These two features are demonstrated in experiment, carrying a beam with crane. As a result, load was started to rotate by controlling gimbal positiion and was stopped by turning off the gimbal power. Moreover, slow movement of the load was also rejected by additional control with gyroscopic sensor.

  • PDF

The Six-Position Calibration Technique of Gyro Bias for Rotational Inertial Navigation System Based on Ring Laser Gyroscope (링 레이저 자이로 기반 회전형 관성항법장치를 위한 6-자세 자이로 바이어스 교정 방법)

  • Yu, Haesung;Kim, Cheon-Joong;Lee, Inseop;Oh, Ju-Hyun;Sung, Chang-Ky;Lee, Sangjeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.189-196
    • /
    • 2019
  • The inertial sensor errors in SDINS(Strapdown Inertial Navigation System) can be compensated by rotating the inertial measurement unit and it is called RINS(Rotational Inertial Navigation System). It is assumed that the error of the inertial sensor in RINS is a static bias. However, the error of the inertial sensor actually developed and produced is not a static bias due to the change of the temperature applied to the sensor and the influence of the earth's gravity acceleration. In this paper, we propose a six-position gyro bias calibration method to evaluate the gyro bias required for RINS and present the test results of applying it to a ring laser gyro inertial navigation system under development.

Error Minimization of Angular Velocity using Encoders and Gyro (엔코더와 자이로를 이용한 각속도 오차 최소화)

  • Kim, Jung-Min;Do, Joo-Cheol;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.814-819
    • /
    • 2010
  • This paper is presented to study the error minimization of angular velocity for AGV(autonomous ground vehicle). The error minimization of angular velocity is related to localization technique which is the most important technique for autonomous vehicle. Accelerometer, yaw gyro and electronic compass have been used to measure angular velocity. And methods for error minimization of angular velocity have been actively studied through probabilistic methods and sensor fusion for AGVs. However, those sensors still occure accumulated error by mathematical error, system characters of each sensor, and computational cost are increased greatly when several sensor are used to correct accumulated error. Therefore, this paper studies about error minimization of angular velocity that just uses encoder and gyro. To experiment, we use autonomous vehicle which is made by ourselves. In experimental result, we verified that the localization error of proposed method has even less than the localization errors which we just used encoder and gyro respectively.