• Title/Summary/Keyword: gyro sensor

Search Result 372, Processing Time 0.027 seconds

Estimation and Verification of Commercial Stability Augmentation System Logic for Small UAV (소형무인기 상용 안정성 증대 장치 로직 추정과 검증)

  • Ko, Dong-hyeon;Rahimy, Mohamad;Choi, Keeyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.821-829
    • /
    • 2019
  • Because rotorcraft is unstable, it needs a stability system such as flybar. Recently, sensor technology has been developed, it uses a stability augmentation system to improve stability instead of flybar. To use of these rotorcraft which include stability augmentations system for unmanned system, flight control computer, include stability augmentations system function, must be required. In this paper, a reverse-engineering method of estimating Algorithm of Commercial Stability Augmentation System is proposed, the result is applied in the flight computer to make an unmanned rotorcraft system. Finally using a validated algorithm, it is possible to establish a system of unmanned automatic rotorcraft system.

Integrated Command System for Firefight Satety in Special Disaster Area (특수재난현장 진압대원의 안전을 위한 통합 지휘시스템에 관한 연구)

  • Roh, Tae-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.98-108
    • /
    • 2015
  • An integrated command system is critical for the safety of firefighters and effective work in the headquarters of a special disaster areas such as natural disaster or large man-made hazard. The integrated command system requires environmental information such as temperature, humidity, and $CO_2$ levels, as well as personal physical information such as pulse and air respirator levels. An Analog to Digital Converter (ADC) chip converts sensed information into digital signals, and a Micro Controller Unit (MCU) transmits the digital signals to a transmission board using serial communication through a Serial Peripheral Interface (SPI). The digital signals are saved in a transmission board and transmitted to the integrated command system by a Radio Frequency (RF) unit. The location of fire-fighters in a building are determined using a gyro sensor and an inertial sensor. The collected information is applied to the integrated command system for firefighter safety and to ensure that they can effectively carry out their duties. Tthis study theoretically and experimentally investigated the technologies of RF transmission, indoor position, and an integrated command system that supports decision making using the transmitted information.

Light-Weight Mobile VR Platform using HMD with 6 Axis (6 축센서를 갖는 HMD 경량 모바일 VR Platform)

  • Kang, Yunhee;Kang, JungJu
    • Journal of Platform Technology
    • /
    • v.6 no.2
    • /
    • pp.3-9
    • /
    • 2018
  • Recently VR environment is used in many areas including mobile learning, smart factory. However HMD(head-mounted display) is required to a dedicated and expensive system with high-end specification. When designing a VR system, it is needed to handle performance, mobility and usability. Many VR applications need to handle diverse sensors and user inputs continuously in a streaming manner. In this paper we design a VR mobile platform and implement a low-cost mobile VR HMD running on the platform. The VR HMD supports 3D contents delivery in a mobile manner. It is used to detect the motion detection based on angle value of a VR player from accelerator and gyro sensor. The MPU-6050, 6-axis sensor, is used to get a sensory value and the sensory value is taken as an input to a VR rendering server on a Unity game engine that is generated 3D images.

Development of an intuitive motion-based drone controller (직관적 제어가 가능한 드론과 컨트롤러 개발)

  • Seok, Jung-Hwan;Han, Jung-Hee;Baek, Jun-Hyuk;Chang, Won-Joo;Kim, Huhn
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.41-45
    • /
    • 2017
  • Drones can be manipulated in a variety of ways. One of the most common controller is joystick method. But joystick controller uses both hands and takes a long time to learn. Particularly, in the case of 8-character flight, it is necessary to use both front and rear flight (pitch), left and right flight (Roll), and body rotation (Yaw). Joystick controller has limitations to intuitively control it. In particular, when the main body rotates, the viewpoint of the forward direction is changed between the drones and the user, thereby causing a mental rotation problem in which the user must control the rotating state of the drones. Therefore, we developed a motion matching controller that matches the motion of the drones and the controller. That is, the movement of the drone and the movement of the controller are the same. In this study, we used a gyro sensor and an acceleration sensor to map the controller's forward / backward, left / right and body rotation movements to drone's forward / backward, left / right, and rotational flight motion. The motor output is controlled by the throttle dial at the center of the controller. As the motions coincide with each other, it is expected that the first drone operator will be able to control more intuitively than the joystick manipulator with less learning.

EA Study on Practical Engineering Education through the Design and Configure of Safe Running Type Drones (안전 주행형 무인기의 설계 및 제작을 통한 실천 공학 교육에 관한 연구)

  • Jo, Yeong-Myeong;Lee, Sang-Gwon;Chang, Eun-Young
    • Journal of Practical Engineering Education
    • /
    • v.9 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • This study will provide a practical plan of engineering education through the study of major activities connected with the production of works to accomplish the graduation conditions by completing the comprehensive design subject and the result of the performance. The designed subject is to measure the minimum safety distance during driving using the obstacle detection function of the ultrasonic sensor and to perform the avoidance algorithm based on the measurement value of the acceleration gyro sensor. It is proposed an access surveillance system that minimizes the damage of drones, surrounding objects, and people, and improves air mobility. Experimental results show that the obstacles around the drone are detected by five ultrasonic sensors and the difference of output value is applied to each motor of the drone and obstacle avoidance is confirmed. In addition, the content and level of the data for measuring the achievement of learning achievement in the engineering education certification program were used and the results were confirmed to be consistent with the description of the engineering problem level required for the graduates of 4-year engineering college.

A Research on the Development of Smartwatch and Wind Speed System for Marine Leisure (해양레저용 스마트워치 및 풍향풍속계 개발에 관한 연구)

  • Ha, Yeon-Chul;Park, Jae-Mun;Lee, In-Seong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.1
    • /
    • pp.20-29
    • /
    • 2021
  • This study developed a smartwatch and a wind speed system in accordance with the necessity of a device that provides the information required in marine leisure. Based on a marine leisure smartwatch with a multi-sensor, a gyro box, and a wind speed system, external data such as GPS, motion, humidity, temperature, air pressure, and heart rate can be collected. In addition, the collected external environment data can be managed through an application on a smartphone, which is an Android-based mobile device. The developed smartwatch and wind speed system are expected to contribute to increasing accessibility and revitalization of the marine leisure industry. In addition, in terms of safety and education, the need for a device that provides marine information is large, so it is expected to increase the possibility of entering the high value-added market and improve the product localization rate.

Recognition of Indoor and Outdoor Exercising Activities using Smartphone Sensors and Machine Learning (스마트폰 센서와 기계학습을 이용한 실내외 운동 활동의 인식)

  • Kim, Jaekyung;Ju, YeonHo
    • Journal of Creative Information Culture
    • /
    • v.7 no.4
    • /
    • pp.235-242
    • /
    • 2021
  • Recently, many human activity recognition(HAR) researches using smartphone sensor data have been studied. HAR can be utilized in various fields, such as life pattern analysis, exercise measurement, and dangerous situation detection. However researches have been focused on recognition of basic human behaviors or efficient battery use. In this paper, exercising activities performed indoors and outdoors were defined and recognized. Data collection and pre-processing is performed to recognize the defined activities by SVM, random forest and gradient boosting model. In addition, the recognition result is determined based on voting class approach for accuracy and stable performance. As a result, the proposed activities were recognized with high accuracy and in particular, similar types of indoor and outdoor exercising activities were correctly classified.

A Study on the Application of Smart Safety Helmets and Environmental Sensors in Ships (선박 내 스마트 안전모 및 환경 센서 적용에 관한 연구)

  • Do-Hyeong Kim;Yeon-Chul Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.82-89
    • /
    • 2023
  • Due to the characteristics of ship structure, the compartment structure is complicated and narrow, so safety accidents frequently occur during the work process. The main causes of accidents include structural collisions, falling objects, toxic substance leaks, fires, explosions, asphyxiation, and more. Understanding the on-site conditions of workers during accidents is crucial for mitigating damages. In order to ensure safety, the on-site situation is monitored using CCTV in the ship, but it is difficult to prevent accidents with the existing method. To address this issue, a smart safety helmet equipped with location identification and voice/video communication capabilities is being developed as a safety technology. Additionally, the smart safety helmet incorporates environmental sensors for temperature, humidity, vibration, noise, tilt (gyro sensor), and gas detection within the work area. These sensors can notify workers wearing the smart safety helmet of hazardous situations. By utilizing the smart safety helmet and environmental sensors, the safety of workers aboard ships can be enhanced.

Driver's Status Recognition Using Multiple Wearable Sensors (다중 웨어러블 센서를 활용한 운전자 상태 인식)

  • Shin, Euiseob;Kim, Myong-Guk;Lee, Changook;Kang, Hang-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.6
    • /
    • pp.271-280
    • /
    • 2017
  • In this paper, we propose a new safety system composed of wearable devices, driver's seat belt, and integrating controllers. The wearable device and driver's seat belt capture driver's biological information, while the integrating controller analyzes captured signal to alarm the driver or directly control the car appropriately according to the status of the driver. Previous studies regarding driver's safety from driver's seat, steering wheel, or facial camera to capture driver's physiological signal and facial information had difficulties in gathering accurate and continuous signals because the sensors required the upright posture of the driver. Utilizing wearable sensors, however, our proposed system can obtain continuous and highly accurate signals compared to the previous researches. Our advanced wearable apparatus features a sensor that measures the heart rate, skin conductivity, and skin temperature and applies filters to eliminate the noise generated by the automobile. Moreover, the acceleration sensor and the gyro sensor in our wearable device enable the reduction of the measurement errors. Based on the collected bio-signals, the criteria for identifying the driver's condition were presented. The accredited certification body has verified that the devices has the accuracy of the level of medical care. The laboratory test and the real automobile test demonstrate that our proposed system is good for the measurement of the driver's condition.

Design and Implementation of Interactive Game based on Embedded System (내장형 시스템 기반 체험형 게임의 설계 및 구현)

  • Lee, Woosik;Jung, Hoejung;Heo, Hojin;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.43-50
    • /
    • 2017
  • Embedded System includes touch, GPS, motion, and acceleration sensor, and can communicate with neighbor devices using wireless communication. Because Arduino with embedded system provides good environment for development and application, developers, engineers, designers, as well as artists, students have a great interest. They utilize Arduino in the robot, home appliances, fashion, culture and so on. In this paper, we design and implement a game using Arduino with embedded system which recognizes the human movement by moving away from one-dimensional game of the existing touch method. Implemented embedded system game measures gyro-sensor to recognize human movement and detects the attack success of the opponent by using touch sensor. Moreover, health of the game player is updated in the real time through the android phone-based database. In this paper, implemented embedded system-based game provides GUI screen of android phone. It is possible to select watching mode and competition mode. Also, it has low energy consumption and easy to expand because it send and receive data packet through recent Bluetooth communication.