• Title/Summary/Keyword: gyro drift

Search Result 41, Processing Time 0.026 seconds

Gyro Drift Model Using Structure Function and Effect on Control System Performance (Structure Function을 사용한 Gyro Drift의 등가모델과 제어시스템에 끼치는 영향의 연구)

  • Choi, Hyung-Jin
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.1-6
    • /
    • 1989
  • This paper addresses modeling of the gyro drift by using the structure function approach which has been originally developed for characterization of the oscillator phase noise. It is shown that by using this approach, an arbitrary order of random and deterministic gyro drift processes can be characterized and easily measured. The relationship between the drift power spectral density and structure function is clarified. It is also shown that this approach simplifies analysis of the effect of drift on the control system performance.

  • PDF

An analysis of the gyro random process (자이로 랜덤 프로세스의 분석)

  • 고영웅;김경주;이재철;권태무
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.210-212
    • /
    • 1996
  • Random drift rate (i.e., random drift in angle rate) of a gyro represents the major error source of inertial navigation systems that are required to operate over long time intervals. It is uncorrectable and leads to an increase in the error with the passage of time. In this paper a technique is presented for analyzing random process from experimental data and the results are presented. The problem of estimating the a priori statistics of a random process is considered using time averages of experimental data. Time averages are calculated and used in the optimal data-processing techniques to determine the statistics of the random process. Therefore the contribution each component to the gyro drift process can be quantitatively measured by its statistics. The above techniques will be applied to actual gyro drift rate data with satisfactory results.

  • PDF

Vision-based Reduction of Gyro Drift for Intelligent Vehicles (지능형 운행체를 위한 비전 센서 기반 자이로 드리프트 감소)

  • Kyung, MinGi;Nguyen, Dang Khoi;Kang, Taesam;Min, Dugki;Lee, Jeong-Oog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.627-633
    • /
    • 2015
  • Accurate heading information is crucial for the navigation of intelligent vehicles. In outdoor environments, GPS is usually used for the navigation of vehicles. However, in GPS-denied environments such as dense building areas, tunnels, underground areas and indoor environments, non-GPS solutions are required. Yaw-rates from a single gyro sensor could be one of the solutions. In dealing with gyro sensors, the drift problem should be resolved. HDR (Heuristic Drift Reduction) can reduce the average heading error in straight line movement. However, it shows rather large errors in some moving environments, especially along curved lines. This paper presents a method called VDR (Vision-based Drift Reduction), a system which uses a low-cost vision sensor as compensation for HDR errors.

Attitude determination for three-axis stabilized satellite

  • Kim, Jinho;Lew, Changmo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.110-114
    • /
    • 1995
  • This paper presents the on-board attitude determination algorithm for LEO (Low Earth Orbit) three-axis stabilized spacecraft. Two advanced star trackers and a three-axis Inertial Reference Unit (IRU) are assumed to be attitude sensors. The gyro in the IRU provides a direct measurement of the attitude rates. However, the attitude estimation error increases with time due to the gyro drift and noise. An update filter with measurements of star trackers and/or sun sensor is designed to update these gyro drift bias and to compensate the attitude error. Kalman Filter is adapted for the on-board update filter algorithm. Simulation results will be presented to investigate the attitude pointing performance.

  • PDF

Study on Vertical Dynamics Compensation for Wobbling Effect Mitigation of Electrostatically Levitated Gyroscope

  • Lee, Jongmin;Song, Hyungmin;Sung, Sangkyung;Kim, Chang Joo;Lee, Sangwoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.293-301
    • /
    • 2014
  • We present a study of vertical dynamics control of an electrostatically levitated gyro-accelerometer considering the wobbling effect and propose a tilt stabilization method with newly introduced control electrodes. Typically, a rotor in a vacuum rotates at high velocity, which may create a drift rate and lead to displacement instability due to the tilt angle of the rotor. To analyze this, first we set up a vertical dynamic equation and determined simulation results regarding displacement control. After deriving an equation for drift dynamics, we analyzed the drift rate of the rotor and the wobbling effect for displacement control quantitatively. Then, we designed new sub-electrodes for moment control that will decrease the drift amplitude of wobbling dynamics. Finally, a simulation study demonstrated that the vertical displacement control with the wobbling compensation electrodes mitigated the rotor's drift rate, showing the effectiveness of the newly proposed control electrodes.

Improved Yaw-angle Estimation Filter as a Function of the Actual Maneuvers for a Cleaning Robot (주행조건 식별을 이용한 로봇청소기의 진행각 추정을 위한 향상된 필터설계)

  • Cho, Yoon Hee;Lee, Sang Cheol;Hong, Sung Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.470-476
    • /
    • 2016
  • This paper proposes a practical algorithm for the reduction of measurement errors due to drift in a micro-electromechanical system (MEMS) gyros that are used for a mobile robot. Any drift in a MEMS gyro will cause an unbounded growth of errors in the estimation of heading, which makes it nearly useless in applications that require high accuracy over a long operating time. In proposed method, maneuvers of a cleaning robot are observed through encoders' measurement process and a decision to correct bias drift will be made if necessary. The method used in this paper is called the "heading estimation filter". To evaluate the accuracy of the proposed method, a comparison was made between the estimation of the heading of the cleaning robot and one from a motion capture system.

The Design and Evaluation of BACF/DCF for Mobile OIS Gyro Sensor's Zero Point angle Following (모바일 OIS(Optical Image Stabilization) 자이로 센서의 영점 각도 추종을 위한 BACF/DCF 설계 및 평가)

  • Lee, Seung-Kwon;Kong, Jin-Heung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.8
    • /
    • pp.16-21
    • /
    • 2012
  • The gyro sensor that made by MEMS process is generated an accumulated error(drift) and escape the zero angle following during calculation of rotate angle. This study propose BACF(Boot Angle Compensation Filter) algorithm for prevent escape zero angle and DCF algorithm for remove accumulated error. DCF algorithm is designed for acquire accurate turn of ratio by remove offset and noise components. BACF algorithm is obtained average offset that removed noise components by recursively calculate. Experimental environment, two-axis gyro sensor and mobile OIS camera mounted control board and 5Hz oscillation of ${\pm}0.5^{\circ}$ for the experiments were carried out. BACF and DCF algorithm is applied and the resulting accumulated error did not occur and exactly zero angle following results were made.

Dynamic and Stochastic Modeling of Litten´s space Inertial Reference Unit(SIRU)

  • Park, H.T.;K.Y Yong;B.S. Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.167.4-167
    • /
    • 2001
  • Accurate mathematical models of spacecraft components are an essential of spacecraft attitude control system design, analysis and simulation. Gyro is one of the most important spacecraft components used for attitude propagation and control. Gyro errors may seriously degrade the accuracy of the calculated spacecraft angular rate and of attitude estimates due to inherent drift and bias errors. In this paper, a detailed mathematical model of gyro containing the relationships for predicting spacecraft angular rate and disturbances is proposed. Stochastic model describing random drift behavior is discussed in frequency domain and time domain. In order to illustrate this approach, we analyze the behavior for Litton´s Space Inertial Reference Uint(SIRU).

  • PDF

Imperfection Parameter Observer and Drift Compensation Controller Design of Hemispherical Resonator Gyros

  • Pi, Jaehwan;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.379-386
    • /
    • 2013
  • The hemispherical resonator gyroscope is a type of vibratory gyroscope, which can measure angle or angular rate, based on its operating mode. This paper deals with the case when the hemispherical resonator gyroscope is operated in angle measurement mode. In angle measurement mode, the resonator pattern angle precesses, with respect to the external rotation input, by the principle of the Coriolis effect, so that the external rotation can be estimated, by measuring the amount of precession angle. However, this pattern angle drifts, due to the manufacturing error of the resonator. Since the drift effect causes degradation of the angle estimation performance of the resonator, the corresponding drift compensation control should be performed, to enhance the estimation performance. In this paper, a mathematical model of the hemispherical resonator gyro is first introduced. By using the mathematical model, a nonlinear observer for imperfection parameter estimation, and the corresponding compensation controller are designed to operate hemispherical resonator gyros, as angle measurement sensors.

Improvement of Heading Error Using a Wavelet De-noising Filter for Indoor Mobile Robots: Application to MEMS Gyro (웨이블렛 디노이징 필터를 이용한 실내 이동로봇의 방위오차 개선연구: MEMS 자이로 적용)

  • Bae, Jin-Hyung;Hong, Sung-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.893-897
    • /
    • 2008
  • To achieve the challenges of low-cost MEMS gyros for the precise self-localization of mobile robots, this paper examines an effective method of minimizing the drift on the heading angle that relies solely on integration of rate signals from a gyro. The main idea of the proposed approach is to use wavelet de-noising filter in order to reduce random noise which affects short-term performances. The proposed method was applied to Epson XV3500 gyro and the performances are verified by the comparisons with an existing commercial gyro module of vacuum cleaning robots.