• Title/Summary/Keyword: gypsum content

Search Result 110, Processing Time 0.029 seconds

A Characteristic of Compaction for construction of dike using Gypsum (석고를 활용한 제방 축조시 석고의 다짐 특성)

  • Seo, Dong-Uk;Kim, Hyeon-Tae;Jang, Pyeong-Wook;Yu, Bong-Sun;Ahn, Chang-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.667-675
    • /
    • 2008
  • As a large construction such as highway, dam, reclaimed land etc. increase in number more and more, large amount of fill materials are required. However, it's difficult to obtain it because of environmental problems and economical efficiency. A alternative plan is to utilize a gypsum which is a by-product yielded from chemical plants and verify suitability to use gypsum as fill materials. Therefore, a characteristic of compaction for gypsum is analyzed and construction methods are given regard to this characteristic from construction of dike using gypsum. Based on the results obtained, it is found that moisture of gypsum in compaction should to be more dry side of O.M.C(optimal moisture content) because of sponge phenomenon. When gypsum is used to fill materials, standards of compaction should be decided from laboratory test.

  • PDF

Combined Effect of Fireproofing Gypsum Board on Residual Strength and Fire Resistance of Fiber Addition High Strength Concrete-Model Column (방화석고보드 부착이 섬유혼입 고강도 콘크리트 모의 기둥부재의 내화특성 및 잔존내력에 미치는 영향)

  • Yang, Seong-Hwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.442-450
    • /
    • 2012
  • In this study, fire resistance and residual strength were examined after the addition of PF fiber and bonding fireproofing gypsum board to a high strength concrete-model column of 50 MPa grade. At the beginning of the experiment, all the properties of base concrete appeared to satisfy the target range. In terms of the internal temperature record, a trend of slightly high temperature was shown when the fireproofing gypsum board was not bonding, and when the fireproofing gypsum board was bonding, as PF content increased gradually, the temperature was gradually lowered. In terms of the relationship, as time elapsed a low temperature was shown when fiber was mixed, and when the board was bonding, the trend of lower temperature could be confirmed. Meanwhile, in terms of spalling property, a severe explosive fracture was generated at PF 0%, and falling off was prevented as the fiber content was increased; however, discoloration and a multitude of cracks were discovered, and when the board was bonding, the trend in which the exterior became satisfactory when the content was increased emerged. In terms of the residual compressive strength, measuring of strength could not be performed at PF 0% without bonding of board, and the strength was increased as the fiber content was increased; however, there was a decrease in strength of about 30 ~ 40%, and in the case of PF 0% with the bonding of board, the strength could be measured; however, about an 80% decrease in strength was shown, and only about a 10 ~ 20% decline in strength was displayed, as the range of decrease was reduced as the fiber content was increased. Considering all of these factors, it was determined that a more efficient enhancement of fire resistance was obtained when two methods are applied in combination rather than when the PF fiber content and bonding of fireproofing gypsum board are utilized individually.

Geotechnical Properties and Environmental Effect of Waste Gymsum (폐석고의 공학적 특성 및 환경적 영향 분석에 관한 연구)

  • 신은철;오영인;이희재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.90-94
    • /
    • 1999
  • Waste gypsum is produced about 2.6million tons per year as a by-product in the process of TiO$_2$production. Geotechnical properties such as natural water content, specific gravity, Atterberg limits were determined to figure out the engineering characteristics waste gypsum. Grain-size distribution, compaction, CBR tests, and unconfined compression test for various mixing ratios between waste gypsum and decomposed granite soil 8t dredged soil. The environmentally adverse effect for mixed specimen with waste gypsum is far below than those of regulatory requirement.

  • PDF

Experimental Study on the Carbonation Properties of Dry Desulfurized Gypsum

  • Seo, Sung Kwan;Kim, Yoo;Chu, Yong Sik;Cho, Hyeong Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.44-49
    • /
    • 2018
  • The use of fossil fuels is steadily increasing. The thermal power generation industry uses a lot of energy and emits a large amount of greenhouse gases. On the other hand, a desulfurization facility can be installed to remove sulfur content during boiler combustion process of the power plant. Dry desulfurized gypsum generated from dry desulfurization facilities is suitable as a $CO_2$ absorbing material due to the presence of CaO. In this study, the carbonation properties of dry desulfurized gypsum were investigated by carbonizing dry desulfurized gypsum via mixing with water and stirring. As a result of microstructural, XRD and thermal analyses of the carbonized dry desulfurized gypsum, the carbonation age was found to be suitable for 16 h. Dry desulfurized gypsum absorbs about 16% of $CO_2$ per unit weight.

Comparison of the measurement methods of soil water content by error analysis (토양수분(土壤水分) 함량(含量) 측정방법별(測定方法別) 오차분석(誤差分析)에 의(依)한 비교(比較))

  • Eom, K.C.;Ryu, K.S.;Um, K.T.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.367-372
    • /
    • 1988
  • A series of field experiment was conducted to find out error range and to compare precision based on error analysis of soil water content measured with gravimetric, surface & depth neutron and gypsum block methods in a sandy loam soil. The error of soil water content measured with gravimetric (core-sampling), surface and depth neutron method showed quardratic curve, whereas that with gypsum block was exponential curve in relation to soil water content. Within the range of volumetric soil water content from 11 to 33%, the error of soil water content measured with gravimetric, surface neutron, depth neutron and gypsum block method was ranged from 0.28 to 3.49%, 0.71 to 2.63%, 0.52% to 1.01% and 0.05 to 21.89%, respectively. The error of soil water content measured with depth neutron method was lower than those of other methods, when the soil water content was more than 14% in sandy loam soil. The relative number of replicates of soil water measurement for surface neutron, depth neutron and gypsum block method to attain same precision for gravimetric method was 0.6-1.7, 0.07-0.8 and 0.1-125, respectively.

  • PDF

The influence of sulphates and chlorides on the properties of slag blended cement (슬래그 혼합 시멘트의 물서에 미치는 황산염과 염화물의 영향)

  • 성진욱;이승헌;김창은
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.127-130
    • /
    • 1999
  • Physical properties and microstructure of slag blended cement were investigated to evaluate the influence of sulphates and chlorides. The compressive strength developed as high chloride content dust and gypsum added and accordingly the microstructure modification was showed. The deviation of pore size distribution and hydrates was also observed. From these results we discussed optimum condition of gypsum and high chloride content dust leading to physical properties in this study.

  • PDF

Uniformity of Large Gypsum-cemented Specimens Fabricated by Air Pluviation Method (낙사법으로 조성된 대형 석고 고결시료의 균질성)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Cho, Yong-Soon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2008
  • The method to prepare the large cemented sand specimen for calibration chamber test by air-pluviation is investigated in this study. The uniformity of cemented specimen is evaluated by performing the CPTs, DMTs, and bender element tests in the calibration chamber. The sand particles, pre-wetted with 0.5% water content, are mixed with gypsum to provide the homogeneous coating of gypsum particles on the grain surface. It was shown that the pre-wetting of particle surface is effective to minimize the potential for segregation between sands and gypsum during air-pluviation. It was observed that the extreme void ratios ($e_{max}\;and\;e_{mix}$) of the mixture of pre-wetted sand and gypsum powder increase at lower gypsum content while those of the mixture of dry sand and gypsum decrease with increasing gypsum content. It was also shown from the test results that large cemented specimens reconstituted in calibration chamber by rainer system are quite uniform in vertical and horizontal directions.

Changes in Nutrients Uptake and Dry Matter Yield of Orchardgrass ( Dactylis glomerata L. ) and Alfalfa ( medicago sativa L. ) by Gypsum Application. (석고시용이 Orchargrass ( Dactylis glomerata L. ) 와 Alfalfa ( Medicago sativa L. )의 양분흡수 및 목초수량에 미치는 영향)

  • 윤순강;송기웅;김재규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.3
    • /
    • pp.141-146
    • /
    • 1990
  • Changes in dry matter yield, crude components, nutrients uptake($P_2O_5$, $K_2O$, CaO, MgO) and sulphur containing amino acid(cysteine, methionine) of orchardgrass(Dacty1is glomerata. L) and alfalfa(A4edicago sativa. L) by gypsum application(as sulphur source, 0, 2. 5, 10, 20kg SIlOa) were investigated to understand the effect of sulphur on herbage production in pasture, which was established in 1987 as means of hand broadcasting. The effect of gypsum on dry matter yield at different cutting times during growing seasons has not been found both in orchardgrass and in alfalfa, but in respect to annual total dry matter yield there were increment in herbage yield (P<0.05) of alfalfa at 5, 10, 20kg SIlOa in 1989 and the amounts of sulphur taken up in herbage slightly increased according to the rates of gypsum application. Maximum apparent recovery of sulphur was 7.55% at 2kg SIlOa in orchardgrass and was 17.8% at 5kg S/lOa in alfalfa. There were no any great differences in the content of crude components of both species and this trend was similar with the mineral contents of orchardgrass. But in alfalfa, the amounts of $K_2O$, CaO, and $P_2O_5$ taken up were increased by gypsum application and the increment in the amounts of minerals taken up in herbage at 20kg SIlOa were 14.9 of $K_2O$, 9.1 of CaO, and 2.5kgIlOa of $P_2O_5$ as compared to those of at untreated plot. Cysteine and methionine were not influenced by gypsum applicaton not only in orchardgrass but also cysteine in alfalfa, however, the content of methionine in alfalfa was slightly increased at 2, 5, lOkg SIlOa and at 20kg SIlOa was reverse.

  • PDF

Effects of Fly Ash and Gypsum Mixture on Reducing Phosphorus Loss from Paddy Soil (논 토양에서 석탄회와 석고의 혼합제를 활용한 인산유출 저감)

  • Lee, Yong-Bok;Lee, Seul-Bi;Oh, Ju-Hwan;Lee, Chang-Hoon;Hong, Chang-Oh;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.66-71
    • /
    • 2008
  • Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Fly ash and phospho-gypsum which are industrial by-product were investigated as a means of reducing dissolved phosphorus in arable soil. To determine the optimum mixing ratio of fly ash(FA) and phospho-gypsum(PG) for reducing dissolved reactive P(DRP) in soil, various mixture ratio of FA and PG were mixed with two soil. The DRP content and pH in soils were analysed after 3 weeks incubation under flooding condition. Although DRP content in soils was significantly decreased by FA-PG mixture compared with control, there were no significant difference among the FA and PG mixture ratio of 75:25, 50:50, and 25:75. The mixture of 75% FA and 25% PG was selected for field test. A field experiment was carried out to evaluate the reducing DRP content in paddy soil to which 0(NPK), 20(FG 20), 40(FG 40), and 60(FG 60) Mg $ha^{-1}$ of the mixture were applied. The DRP content was reduced by 31% at the application rate of 60 Mg $ha^{-1}$. In contrast to deceasing DRP, Ca-P content increased significantly with the mixture application rate. After rice harvesting, available $SiO_2$, P, and exchangeable Ca content in soil increased significantly with application rate due to high content of Si, P, and Ca in the mixture. Mixtures of fly ash and gypsum should reduce P loss from paddy soil and increase soil fertility.

Reaction Characteristics of the CAC with Various Gypsum Type and Mixing Ratio (석고 종류 및 혼입률에 따른 CAC 반응 특성)

  • Choi, Sun-Mi;Kim, Jin-Man;Koo, Ja-Sul
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.83-91
    • /
    • 2021
  • Ladle furnace slag is a byproduct of the steel-making process, and it contains the mineral β-C2Sandtherapid-settingmineral (dependingonwhichreducingagenthasbeenused). Ladle furnace slag is often treated through slow cooling, which causes the slag to lose its reactivity. In this study, the properties of air-quenched CAC and pulverized ladle furnace slag containing gypsum were evaluated, and the optimal mixing ratio was determined for broadening their usage. Consequently, the properties of CAC aredemonstrated by the dissolution of gypsum after a period of three hours and the content of gypsum after a period of one day. The optimal mixing ratio of anhydrate and hemihydrate gypsum is found to be within 30% and that of dihydrate gypsum is found to be higher than 35%. Furthermore, based on the results of CAC with dihydrate gypsum, the applicability of the by-product dihydrate gypsum has been verified.