• Title/Summary/Keyword: gut-lung axis

Search Result 5, Processing Time 0.019 seconds

Gut Microbiome as a Possible Cause of Occurrence and Therapeutic Target in Chronic Obstructive Pulmonary Disease

  • Eun Yeong Lim;Eun-Ji Song;Hee Soon Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1111-1118
    • /
    • 2023
  • As a long-term condition that affects the airways and lungs, chronic obstructive pulmonary disease (COPD) is characterized by inflammation, emphysema, breathlessness, chronic cough, and sputum production. Currently, the bronchodilators and anti-inflammatory drugs prescribed for COPD are mostly off-target, warranting new disease management strategies. Accumulating research has revealed the gut-lung axis to be a bidirectional communication system. Cigarette smoke, a major exacerbating factor in COPD and lung inflammation, affects gut microbiota composition and diversity, causing gut microbiota dysbiosis, a condition that has recently been described in COPD patients and animal models. For this review, we focused on the gut-lung axis, which is influenced by gut microbial metabolites, bacterial translocation, and immune cell modulation. Further, we have summarized the findings of preclinical and clinical studies on the association between gut microbiota and COPD to provide a basis for using gut microbiota in therapeutic strategies against COPD. Our review also proposes that further research on probiotics, prebiotics, short-chain fatty acids, and fecal microbiota transplantation could assist therapeutic approaches targeting the gut microbiota to alleviate COPD.

Alteration of Lung and Gut Microbiota in IL-13-Transgenic Mice Simulating Chronic Asthma

  • Sohn, Kyoung-Hee;Baek, Min-gyung;Choi, Sung-Mi;Bae, Boram;Kim, Ruth Yuldam;Kim, Young-Chan;Kim, Hye-Young;Yi, Hana;Kang, Hye-Ryun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1819-1826
    • /
    • 2020
  • Increasing evidence suggests a potential role of microbial colonization in the inception of chronic airway diseases. However, it is not clear whether the lung and gut microbiome dysbiosis is coincidental or a result of mutual interaction. In this study, we investigated the airway microbiome in interleukin 13 (IL-13)-rich lung environment and related alterations of the gut microbiome. IL-13-overexpressing transgenic (TG) mice presented enhanced eosinophilic inflammatory responses and mucus production, together with airway hyperresponsiveness and subepithelial fibrosis. While bronchoalveolar lavage fluid and cecum samples obtained from 10-week-old IL-13 TG mice and their C57BL/6 wild-type (WT) littermates showed no significant differences in alpha diversity of lung and gut microbiome, they presented altered beta diversity in both lung and gut microbiota in the IL-13 TG mice compared to the WT mice. Lung-specific IL-13 overexpression also altered the composition of the gut as well as the lung microbiome. In particular, IL-13 TG mice showed an increased proportion of Proteobacteria and Cyanobacteria and a decreased amount of Bacteroidetes in the lungs, and depletion of Firmicutes and Proteobacteria in the gut. The patterns of polymicrobial interaction within the lung microbiota were different between WT and IL-13 TG mice. For instance, in IL-13 TG mice, lung Mesorhizobium significantly affected the alpha diversity of both lung and gut microbiomes. In summary, chronic asthma-like pathologic changes can alter the lung microbiota and affect the gut microbiome. These findings suggest that the lung-gut microbial axis might actually work in asthma.

The Effect of Glasthma Syrup in Asthma: a study protocol for a triple-blind randomized controlled trial

  • Derakhshan, Ali Reza;Saeidinejat, Shahin;Khadem-Rezaiyan, Majid;Asnaashari, Amir-Mohammad-Hashem;Mirsadraee, Majid;Salari, Roshanak;Jabbari-Azad, Farahzad;Jalali, Shima;Jalali, Shabnam
    • Journal of Pharmacopuncture
    • /
    • v.25 no.3
    • /
    • pp.233-241
    • /
    • 2022
  • Objectives: Asthma is a chronic disease, and the demand for herbal medicines in this field has increased in recent years. The new findings highlight the role of the gut-lung axis in the pathophysiology of asthma. Hence, this study will evaluate the safety and efficacy of Glasthma syrup, an herbal formula based on Persian medicine, in improving asthma and regulating intestinal permeability. The formula consists of five herbal ingredients that have anti-inflammatory effects on the respiratory tract, also known as gut tonics. Methods: The study will be conducted as a placebo-controlled, triple-blind, randomized trial. It will consist of a 4-week intervention followed by a 4-week follow-up period. The target sample size is 20 patients with moderate asthma aged 18 to 60 years. Eligible participants will be randomly assigned to either the experimental group or the control group in equal numbers. Patients in the experimental group will take Glasthma syrup (7.5 mL, twice a day), while patients in the control group will take a matching placebo. Both groups will receive a 4-week combination of a long-acting beta2 agonist and a leukotriene modulator as standard of care. Inhaled corticosteroids can be used as rescue medication as needed. Results: The primary outcomes are asthma symptom scale, lung function, and intestinal permeability. Secondary outcomes include quality of life, symptom recurrence rates, and blood tests. A safety assessment will also be conducted during the trial. Conclusion: In this trial, the effects of Glasthma syrup in patients with moderate asthma will be examined. The study will also assess the effects of the formulation on the gut-lung axis by simultaneously monitoring the gut permeability index, asthma symptoms, and lung function.

The impact of cancer cachexia on gut microbiota composition and short-chain fatty acid metabolism in a murine model

  • Seung Min Jeong;Eun-Ju Jin;Shibo Wei;Ju-Hyeon Bae;Yosep Ji;Yunju Jo;Jee-Heon Jeong;Se Jin Im;Dongryeol Ryu
    • BMB Reports
    • /
    • v.56 no.7
    • /
    • pp.404-409
    • /
    • 2023
  • This study investigates the relationship between cancer cachexia and the gut microbiota, focusing on the influence of cancer on microbial composition. Lewis lung cancer cell allografts were used to induce cachexia in mice, and body and muscle weight changes were monitored. Fecal samples were collected for targeted metabolomic analysis for short chain fatty acids and microbiome analysis. The cachexia group exhibited lower alpha diversity and distinct beta diversity in gut microbiota, compared to the control group. Differential abundance analysis revealed higher Bifidobacterium and Romboutsia, but lower Streptococcus abundance in the cachexia group. Additionally, lower proportions of acetate and butyrate were observed in the cachexia group. The study observed that the impact of cancer cachexia on gut microbiota and their generated metabolites was significant, indicating a host-to-gut microbiota axis.

Interplays between human microbiota and microRNAs in COVID-19 pathogenesis: a literature review

  • Hong, Bok Sil;Kim, Myoung-Ryu
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • [Purpose] Recent studies have shown that COVID-19 is often associated with altered gut microbiota composition and reflects disease severity. Furthermore, various reports suggest that the interaction between COVID-19 and host-microbiota homeostasis is mediated through the modulation of microRNAs (miRNAs). Thus, in this review, we aim to summarize the association between human microbiota and miRNAs in COVID-19 pathogenesis. [Methods] We searched for the existing literature using the keywords such "COVID-19 or microbiota," "microbiota or microRNA," and "COVID-19 or probiotics" in PubMed until March 31, 2021. Subsequently, we thoroughly reviewed the articles related to microbiota and miRNAs in COVID-19 to generate a comprehensive picture depicting the association between human microbiota and microRNAs in the pathogenesis of COVID-19. [Results] There exists strong experimental evidence suggesting that the composition and diversity of human microbiota are altered in COVID-19 patients, implicating a bidirectional association between the respiratory and gastrointestinal tracts. In addition, SARS-CoV-2 encoded miRNAs and host cellular microRNAs modulated by human microbiota can interfere with viral replication and regulate host gene expression involved in the initiation and progression of COVID-19. These findings suggest that the manipulation of human microbiota with probiotics may play a significant role against SARS-CoV-2 infection by enhancing the host immune system and lowering the inflammatory status. [Conclusion] The human microbiota-miRNA axis can be used as a therapeutic approach for COVID-19. Hence, further studies are needed to investigate the exact molecular mechanisms underlying the regulation of miRNA expression in human microbiota and how these miRNA profiles mediate viral infection through host-microbe interactions.