• Title/Summary/Keyword: gut microbes

Search Result 65, Processing Time 0.024 seconds

Biochemical and Molecular Insights into Bile Salt Hydrolase in the Gastrointestinal Microflora - A Review -

  • Kim, Geun-Bae;Lee, Byong H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1505-1512
    • /
    • 2005
  • Bile salt deconjugation is the most biologically significant reaction among the bacterial alterations of bile acids in the gastrointestinal tract of human and animal. The responsible enzyme, bile salt hydrolase (BSH), catalyzes the hydrolysis of glycineand/or taurine-conjugated bile salts into amino acid residues and deconjugated bile acids. Herein we review current knowledge on the distribution of BSH activity among various microorganisms with respect to their biochemical and molecular characteristics. The proposed physiological impact of BSH activity on the host animal as well as on the BSH-producing bacterial cells is discussed. BSH activity of the probiotic strains is examined on the basis of BSH hypothesis, which was proposed to explain cholesterol-lowering effects of probiotics. Finally, the potential applications of BSH research are briefly discussed.

Evolution of microbiology in the 21st century and the change of oral health care management paradigm (21세기 미생물학의 혁명과 구강위생관리 패러다임의 변화)

  • Kim, Hyesung
    • Journal of Korean Academy of Dental Administration
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Prior to the end of the 20th century, microorganism research was limited to culture and has since been revolutionized by genetic analysis. Microorganisms, including bacteria, can cause disease, but most of them are commensal microorganisms in our bodies. This knowledge changes the pathological approach to infectious diseases and lends to a new perspective on the effects of gut and oral microorganisms on disease and health. The oral cavity, particularly the periodontal pocket, is considered to be a reservoir of microbes that cause disease, and oral microbial control is becoming more important. In this review, I will examine the changes in the microbiological revolution and the meaning of oral healthcare management based on those changes.

Clostridium difficile colonization and/or infection during infancy and the risk of childhood allergic diseases

  • Lee, Sun Hwa;Gong, Yun Na;Ryoo, Eell
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.5
    • /
    • pp.145-150
    • /
    • 2017
  • Purpose: The gut microbiota can influence several diseases through immune modulation; however, the exact role of microbes such as Clostridium difficile and the relationship between microbiota colonization and allergic diseases are not well known. This study aimed to determine the relationship between C. difficile colonization and/or infection (CDCI) during infancy and allergic diseases during early childhood. Methods: Infants 1-12 months of age presenting changes in bowel habits for more than 2 weeks were enrolled in this study. After dividing them into 2 groups according to the presence and absence of C. difficile, the risk of allergic disease development during childhood was identified and compared. Results: Sixty-five patients were included in this study; 22 (33.8%) were diagnosed with CDCI. No significant differences were observed in baseline characteristics between the C. difficile-positive and-negative groups except for antibiotic exposure (22.7% vs. 60.5%, P=0.004). Compared to the C. difficile-negative group, the risk of developing at least one allergic disease was higher in the C. difficile-positive group after adjusting other variables (adjusted odds ratios, 5.61; 95% confidence interval, 1.52-20.74; P=0.007). Furthermore, food allergies were more prevalent in the C. difficile-positive group (P=0.03). Conclusion: CDCI during infancy were associated with a higher risk of developing allergic diseases during early childhood. These results suggest that CDCI during infancy might reflect the reduced diversity of the intestinal microbiota, which is associated with an increased risk of allergic sensitization. To identify the underlying mechanism, further investigation and a larger cohort study will be needed.

Metagenomic Analysis of Novel Lignocellulose-Degrading Enzymes from Higher Termite Guts Inhabiting Microbes

  • Nimchua, Thidarat;Thongaram, Taksawan;Uengwetwanit, Tanaporn;Pongpattanakitshote, Somchai;Eurwilaichitr, Lily
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.462-469
    • /
    • 2012
  • A metagenomic fosmid library was constructed from genomic DNA isolated from the microbial community residing in hindguts of a wood-feeding higher termite (Microcerotermes sp.) collected in Thailand. The library was screened for clones expressing lignocellulolytic activities. Fourteen independent active clones (2 cellulases and 12 xylanases) were obtained by functional screening at pH 10.0. Analysis of shotgun-cloning and pyrosequencing data revealed six ORFs, which shared less than 59% identity and 73% similarity of their amino acid sequences with known cellulases and xylanases. Conserved domain analysis of these ORFs revealed a cellulase belonging to the glycoside hydrolase family 5, whereas the other five xylanases showed significant identity to diverse families including families 8, 10, and 11. Interestingly, one fosmid clone was isolated carrying three contiguous xylanase genes that may comprise a xylanosome operon. The enzymes with the highest activities at alkaline pH from the initial activity screening were characterized biochemically. These enzymes showed a broad range of enzyme activities from pH 5.0 to 10.0, with pH optimal of 8.0 retaining more than 70% of their respective activities at pH 9.0. The optimal temperatures of these enzymes ranged from $50^{\circ}C$ to $55^{\circ}C$. This study provides evidence for the diversity and function of lignocellulose-degrading enzymes in the termite gut microbial community, which could be of potential use for industrial processes such as pulp biobleaching and denim biostoning.

Evaluation of glycerol encapsulated with alginate and alginate-chitosan polymers in gut environment and its resistance to rumen microbial degradation

  • Gawad, Ramadan;Fellner, Vivek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.72-81
    • /
    • 2019
  • Objective: To determine the effect of gut pH and rumen microbial fermentation on glycerol encapsulated in alginate and alginate-chitosan polymers. Methods: Glycerol was encapsulated at 2.5%, 5%, 7.5%, or 10% (w/w) with sodium alginate (A) and alginate-chitosan (AC) polymers. Surface morphology and chemical modifications of the beads were evaluated using scanning electron microscopy and Fourier transform infrared (FTIR) spectra. Encapsulation efficiency was determined at the 5% glycerol inclusion level in two experiments. In experiment 1, 0.5 g of alginate-glycerol (AG) and alginate-chitosan glycerol (ACG) beads were incubated for 2 h at $39^{\circ}C$ in pH 2 buffer followed by 24 h in pH 8 buffer to simulate gastric and intestinal conditions, respectively. In experiment 2, 0.5 g of AG and ACG beads were incubated in pH 6 buffer at $39^{\circ}C$ for 8 h to simulate rumen conditions. All incubations were replicated four times. Free glycerol content was determined using a spectrophotometer and used to assess loading capacity and encapsulation efficiency. An in vitro experiment with mixed cultures of rumen microbes was conducted to determine effect of encapsulation on microbial fermentation. Data were analyzed according to a complete block design using the MIXED procedure of SAS (SAS Institute, Cary, NC, USA). Results: For AG and ACG, loading capacity and efficiency were 64.7%, 74.7%, 70.3%, and 78.1%, respectively. Based on the FTIR spectra and scanning electron microscopy, ACG treatment demonstrated more intense and stronger ionic bonds. At pH 6, 36.1% and 29.7% of glycerol was released from AG and ACG, respectively. At pH 2 minimal glycerol was released but pH 8 resulted in 95.7% and 93.9% of glycerol released from AG and ACG, respectively. In vitro microbial data show reduced (p<0.05) fermentation of encapsulated glycerol after 24 h of incubation. Conclusion: The AC polymer provided greater protection in acidic pH with a gradual release of intact glycerol when exposed to an alkaline pH.

Intestinal microbial composition changes induced by Lactobacillus plantarum GBL 16, 17 fermented feed and intestinal immune homeostasis regulation in pigs

  • Da Yoon, Yu;Sang-Hyon, Oh;In Sung, Kim;Gwang Il, Kim;Jeong A, Kim;Yang Soo, Moon;Jae Cheol, Jang;Sang Suk, Lee;Jong Hyun, Jung;Jun, Park;Kwang Keun, Cho
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1184-1198
    • /
    • 2022
  • In this study, Rubus coreanus (R. coreanus) byproducts with high polyphenol content were fermented with R. coreanus-derived lactic acid bacteria (Lactobacillus plantarum GBL 16 and 17). Then the effect of R. coreanus-derived lactic acid bacteria fermented feed (RC-LAB fermented feed) with probiotics (Bacillus subtills, Aspergillus oryzae, Yeast) as a feed additive for pigs on the composition of intestinal microbes and the regulation of intestinal immune homeostasis was investigated. Seventy-two finishing Berkshire pigs were randomly allotted to four different treatment groups and 18 replicates. RC-LAB fermented feed with probiotics increased the genera Lactobacillus, Streptococcus, Mitsuokella, Prevotella, Bacteroides spp., Roseburia spp., and Faecalibacterium prausnitzii, which are beneficial bacteria of the digestive tract of pigs. Also, RC-LAB fermented feed with probiotics decreased the genera Clostridium, Terrisporobacter, Romboutsia, Kandleria, Megasphaera and Escherichia, which are harmful bacteria. In particular, the relative abundance of the genera Lactobacillus and Streptococcus increased by an average of 8.51% and 4.68% in the treatment groups and the classes Clostridia and genera Escherichia decreased by an average of 27.05% and 2.85% in the treatment groups. In mesenteric lymph nodes (MLN) and spleens, the mRNA expression of transcription factors and cytokines in Th1 and Treg cells increased and the mRNA expression of Th2 and Th17 transcription factors and cytokines decreased, indicating a regulatory effect on intestinal immune homeostasis. RC-LAB fermented feed regulates gut immune homeostasis by influencing the composition of beneficial and detrimental microorganisms in the gut and regulating the balance of Th1/Th2 and Th17/Treg cells.

Gut microbiota derived from fecal microbiota transplantation enhances body weight of Mimas squabs

  • Jing Ren;Yumei Li;Hongyu Ni;Yan Zhang;Puze Zhao;Qingxing Xiao;Xiaoqing Hong;Ziyi Zhang;Yijing Yin;Xiaohui Li;Yonghong Zhang;Yuwei Yang
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1428-1439
    • /
    • 2024
  • Objective: Compared to Mimas pigeons, Shiqi pigeons exhibit greater tolerance to coarse feeding because of their abundant gut microbiota. Here, to investigate the potential of utilizing intestinal flora derived from Shiqi pigeons, the intestinal flora and body indices of Mimas squabs were evaluated after fecal microbiota transplantation (FMT) from donors. Methods: A total of 90 one-day-old squabs were randomly divided into the control group (CON), the low-concentration group (LC) and the high-concentration group (HC): gavaged with 200 μL of bacterial solution at concentrations of 0, 0.1, and 0.2 g/15 mL, respectively. Results: The results suggested that FMT improved the body weight of Mimas squabs in the HC and LC groups (p<0.01), and 0.1 g/15 mL was the optimal dose during FMT. After 16S rRNA sequencing was performed, compared to those in the CON group, the abundance levels of microflora, especially Lactobacillus, Muribaculaceae, and Megasphaera (p<0.05), in the FMT-treated groups were markedly greater. Random forest analysis indicated that the main functions of key microbes involve pathways associated with metabolism, further illustrating their important role in the host body. Conclusion: FMT has been determined to be a viable method for augmenting the weight and intestinal microbiota of squabs, representing a unique avenue for enhancing the economic feasibility of squab breeding.

Molecular Analysis of Archaea, Bacteria and Eucarya Communities in the Rumen - Review-

  • White, B.A.;Cann, I.K.O.;Kocherginskaya, S.A.;Aminov, R.I.;Thill, L.A.;Mackie, R.I.;Onodera, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.129-138
    • /
    • 1999
  • If rumen bacteria can be manipulated to utilize nutrients (i.e., ammonia and plant cell wall carbohydrates) more completely and efficiently, the need for protein supplementation can be reduced or eliminated and the digestion of fiber in forage or agricultural residue-based diets could be enhanced. However, these approaches require a complete and accurate description of the rumen community, as well as methods for the rapid and accurate detection of microbial density, diversity, phylogeny, and gene expression. Molecular ecology techniques based on small subunit (SSU) rRNA sequences, nucleic acid probes and the polymerase chain reaction (PCR) can potentially provide a complete description of the microbial ecology of the rumen of ruminant animals. The development of these molecular tools will result in greater insights into community structure and activity of gut microbial ecosystems in relation to functional interactions between different bacteria, spatial and temporal relationships between different microorganisms and between microorganisms and reed panicles. Molecular approaches based on SSU rRNA serve to evaluate the presence of specific sequences in the community and provide a link between knowledge obtained from pure cultures and the microbial populations they represent in the rumen. The successful development and application of these methods promises to provide opportunities to link distribution and identity of gastrointestinal microbes in their natural environment with their genetic potential and in situ activities. The use of approaches for assessing pupulation dynamics as well as for assessing community functionality will result in an increased understanding and a complete description of the gastrointestinal communities of production animals fed under different dietary regimes, and lead to new strategies for improving animal growth.

Correlation analysis of muscle amino acid deposition and gut microbiota profile of broilers reared at different ambient temperatures

  • Yang, Yuting;Gao, Huan;Li, Xing;Cao, Zhenhui;Li, Meiquan;Liu, Jianping;Qiao, Yingying;Ma, Li;Zhao, Zhiyong;Pan, Hongbin
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.93-101
    • /
    • 2021
  • Objective: Temperature could influence protein and amino acid deposition as well as gut microbiota profile and composition. However, the specific effects of ambient temperature on amino acids deposition and gut microbiota composition remain insufficiently understood. Methods: A total of 300 one-day-old Avian broilers were randomly divided into three groups and reared at high, medium, and low temperature (HT, MT, and LT), respectively. Breast muscle and fecal samples were collected for amino acid composition analysis and 16S rRNA gene sequence analysis. Results: Our data showed that compared to the MT group, there was a decrease of muscle leucine and tyrosine (p<0.05), as well as an increase of methionine in the HT group (p<0.05) and a decrease of serine in the LT group. Examination of microbiota shift revealed that at genus level, the relative abundance of Turicibacter and Parabacteroides was increased in the HT group (p<0.05) and that the relative abundances of Pandoraea, Achromobacter, Prevotella, Brevundimonas, and Stenotrophomonas in the LT group were higher than those in the MT group (p<0.05). In addition, there were substantial correlations between microbes and amino acids. In the HT group. Turicibacter was negatively correlated with aspartic acid and tyrosine, whereas Parabacteroides was positively correlated with methionine (p<0.05). In the LT group, there were multiple positive correlations between Achromobacter and arginine, isoleucine or tyrosine; between Prevotella and cysteine or phenylalanine; between Brevundimonas and cysteine; and between Stenotrophomonas and cysteine as well as a negative correlation between Stenotrophomonas and serine. Conclusion: Our findings demonstrated that amino acid content of breast muscle and intestinal microbiota profile was affected by different ambient temperatures. Under heat exposure, augmented abundance of Parabacteroides was correlated with elevated methionine. Low temperature treatment may affect muscle tyrosine content through the regulation of Achromobacter.

Probiotic Functional Dairy Foods and Health Claims: an Overview

  • Jayaprakasha, Heddur M.;Yoon, Yoh-Chang;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.523-528
    • /
    • 2005
  • The commercial interests in functional foods containing probiotics are gaining significance in view of increasing studies on their role in digestive tract. Probiotic dairy foods containing health-promoting bacteria are important segment of functional food market. Various health benefits have been attributed to specific strains of lactic acid bacteria or food containing these probiotic cultures. Probiotic-containing foods are considered to improve general gut health and natural defenses of body, and lower blood cholesterol level. Specific probiotic microbes can alleviate or prevent diverse intestinal diarrhea-inducing disorders, cause prophylaxis of intestinal and urogenital infections, inhibit mutagenicity of intestinal contents, and reduce incidence of intestinal tumors. Recent increasing evidences on health effects of probiotics have triggered consumer interest in this category of functional foods. Rational approach needs to be applied in selection of strains for probiotic preparation to achieve required functionality. Present article focuses on some prominent probiotic candidates and criteria for their inclusion in functional food sector. Various health claims of probiotics on gastrointestinal disorders, anticarcinogenic effects, and anti-cholestrimic effects, and possible mechanistic explanations for their functionality are highlighted.