• Title/Summary/Keyword: gust speed

Search Result 110, Processing Time 0.023 seconds

Efficient buffeting analysis under non-stationary winds and application to a mountain bridge

  • Su, Yanwen;Huang, Guoqing;Liu, Ruili;Zeng, Yongping
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.89-104
    • /
    • 2021
  • Non-synoptic winds generated by tornadoes, downbursts or gust fronts exhibit significant non-stationarity and can cause significant wind load effect on flexible structures such as long-span bridges. However, conventional assumptions on stationarity used to evaluate the structural wind-induced vibration are inadequate. In this paper, an efficient frequency domain scheme based on fast CQC method, which can predict non-stationary buffeting random responses of long-span bridges, is presented, and then this approach is applied to evaluate the buffeting response of a long-span suspension bridge located in a complex mountainous wind environment as an example. In this study, the data-driven method based on one available measured wind speed sample is firstly presented to establish non-stationary wind models, including time-varying mean wind speed, time-varying intensity envelope function and uniformly modulated fluctuating spectrum. Then, a linear time-variant (LTV) system based on the proposed scheme can be generally applied to calculate the non-stationary buffeting responses. The effectiveness and accuracy of the proposed scheme are verified through Monte Carlo time domain simulation implemented in ANSYS platform. Also, the transient effect nature of the bridge responses is further illustrated by comparison of the non-stationary, quasistationary and steady-state cases. Finally, buffeting response analysis with traditional stationary treatment (10 min constant mean plus stationary wind fluctuation) is performed to illustrate the importance of the non-stationary characteristics embedded in original wind speed samples.

A Study on the Probability distribution of Recent Annal Fluctuating Wind Velocity (최근 연최대변동풍속의 확률분포에 관한 연구)

  • Oh, Jong Seop;Heo, Seong Je
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • This study is concerned with the estimation of fluctuate wind velocity statistic properties in the major cities reflecting the recent meteorological with largest data samples (yearly 2003-2012). The basic wind speeds were standardized homogeneously to the surface roughness category C, and to 10m above the ground surface. The estimation of the extreme of non-Gaussian load effects for design applications has often been treated tacitly by invoking a conventional wind design (gust load peak factor) on the basis of Gaussian processes. This assumption breaks down when the loading processes exhibits non-Gaussianity, in which a conventional wind design yields relatively non conservative estimates because of failure to include long tail regions inherent to non-Gaussian processes. This study seeks to ascertain the probability distribution function from recently wind data with effected typhoon & maximum instantaneous wind speed.

Dynamic Responses of Offshore Meteorological Tower Under Wind and Wave (바람과 파랑을 받는 해상 풍력 기상탑의 동적 응답)

  • Kwon, Soon-Duck
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.171-177
    • /
    • 2018
  • In order to investigate the cause of damage of the offshore meteorological tower, the measured wind speed data were analyzed, the dynamic displacement due to fluctuating wind load and wave load was calculated, and the fatigue was examined for vortex-induced vibration. It was confirmed from the results that the vibration lasting for four hours occurred in the meteorological tower when the maximum wind speeds for 10 minutes were compared for both the vane anemometer and ultrasonic anemometer. The effect of the gust wind on the dynamic response of the meteorological tower was greater than the wave. However, the combined forces acting on the meteorological tower was much lower than the design force even though the wind and wave loads were simultaneously applied. The vortex-induced vibration seemed to be cause of the fatigue failure in the connecting bolts. The destruction of the offshore meteorological tower was considered to be a vortex-induced vibration, not a fluctuating fluid flows.

Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons

  • Ye, X.W.;Xi, P.S.;Su, Y.H.;Chen, B.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.809-824
    • /
    • 2017
  • The accurate evaluation of wind characteristics and wind-induced structural responses during a typhoon is of significant importance for bridge design and safety assessment. This paper presents an expectation maximization (EM) algorithm-based angular-linear approach for probabilistic modeling of field-measured wind characteristics. The proposed method has been applied to model the wind speed and direction data during typhoons recorded by the structural health monitoring (SHM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. In the summer of 2015, three typhoons, i.e., Typhoon Chan-hom, Typhoon Soudelor and Typhoon Goni, made landfall in the east of China and then struck the Jiubao Bridge. By analyzing the wind monitoring data such as the wind speed and direction measured by three anemometers during typhoons, the wind characteristics during typhoons are derived, including the average wind speed and direction, turbulence intensity, gust factor, turbulence integral scale, and power spectral density (PSD). An EM algorithm-based angular-linear modeling approach is proposed for modeling the joint distribution of the wind speed and direction. For the marginal distribution of the wind speed, the finite mixture of two-parameter Weibull distribution is employed, and the finite mixture of von Mises distribution is used to represent the wind direction. The parameters of each distribution model are estimated by use of the EM algorithm, and the optimal model is determined by the values of $R^2$ statistic and the Akaike's information criterion (AIC). The results indicate that the stochastic properties of the wind field around the bridge site during typhoons are effectively characterized by the proposed EM algorithm-based angular-linear modeling approach. The formulated joint distribution of the wind speed and direction can serve as a solid foundation for the purpose of accurately evaluating the typhoon-induced fatigue damage of long-span bridges.

A STUDY ON THE AERODYNAMIC EFFECTS WHEN A HIGH-SPEED TRAIN PASSING THROUGH AN UNDERGROUND STATION USING COMPUTATIONAL FLUID DYNAMICS (고속열차의 지하정거장 통과 시 발생하는 공기역학적 영향에 대한 전산유체해석 연구)

  • Lim, K.M.;Kim, Y.M.;Bang, M.S.;Kwon, H.B.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.61-70
    • /
    • 2016
  • Dong-tan Station, shared by high-speed railway and urban express railway, is a very complicated underground station having 6 tracks together with barrier and shafts between them, therefore it seems very hard to investigate the aerodynamic effects including the pressure variation and train gust in the station when a high-speed train runs through it. In this study, the aerodynamic effects on the structures and platform passengers when a high-speed train runs through an underground station have been studied using Computational Fluid Dynamics. STAR-CCM+ has been employed for numerical simulation based on Navier-Stokes equation and 2-equation turbulence model and moving mesh scheme supported by STAR-CCM+ has also been used to represent the relative motion between a train and station. Based on the simulation results, the unsteady flow fields in the underground station induced by the high-speed train have been analyzed and the pressures on the PSDs and pressure variation at the platform have quantitatively assessed.

Comparative analysis of the wind characteristics of three landfall typhoons based on stationary and nonstationary wind models

  • Quan, Yong;Fu, Guo Qiang;Huang, Zi Feng;Gu, Ming
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.269-285
    • /
    • 2020
  • The statistical characteristics of typhoon wind speed records tend to have a considerable time-varying trend; thus, the stationary wind model may not be appropriate to estimate the wind characteristics of typhoon events. Several nonstationary wind speed models have been proposed by pioneers to characterize wind characteristics more accurately, but comparative studies on the applicability of the different wind models are still lacking. In this study, three landfall typhoons, Ampil, Jongdari, and Rumbia, recorded by ultrasonic anemometers atop the Shanghai World Financial Center (SWFC), are used for the comparative analysis of stationary and nonstationary wind characteristics. The time-varying mean is extracted with the discrete wavelet transform (DWT) method, and the time-varying standard deviation is calculated by the autoregressive moving average generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model. After extracting the time-varying trend, the longitudinal wind characteristics, e.g., the probability distribution, power spectral density (PSD), turbulence integral scale, turbulence intensity, gust factor, and peak factor, are comparatively analyzed based on the stationary wind speed model, time-varying mean wind speed model and time-varying standard deviation wind speed model. The comparative analysis of the different wind models emphasizes the significance of the nonstationary considerations in typhoon events. The time-varying standard deviation model can better identify the similarities among the different typhoons and appropriately describe the nonstationary wind characteristics of the typhoons.

Assessment of capacity curves for transmission line towers under wind loading

  • Banik, S.S.;Hong, H.P.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.1-20
    • /
    • 2010
  • The recommended factored design wind load effects for overhead lattice transmission line towers by codes and standards are evaluated based on the applicable wind load factor, gust response factor and design wind speed. The current factors and design wind speed were developed considering linear elastic responses and selected notional target safety levels. However, information on the nonlinear inelastic responses of such towers under extreme dynamic wind loading, and on the structural capacity curves of the towers in relation to the design capacities, is lacking. The knowledge and assessment of the capacity curve, and its relation to the design strength, is important to evaluate the integrity and reliability of these towers. Such an assessment was performed in the present study, using a nonlinear static pushover (NSP) analysis and incremental dynamic analysis (IDA), both of which are commonly used in earthquake engineering. For the IDA, temporal and spatially varying wind speeds are simulated based on power spectral density and coherence functions. Numerical results show that the structural capacity curves of the tower determined from the NSP analysis depend on the load pattern, and that the curves determined from the nonlinear static pushover analysis are similar to those obtained from IDA.

Development of Probabilistic Wind Load Models (국내 풍하중의 확률적 모형 개발)

  • 김상효;배규웅;박홍석
    • Computational Structural Engineering
    • /
    • v.3 no.2
    • /
    • pp.109-115
    • /
    • 1990
  • The probabilistic characteristics of wind loads have been analyzed using statistical data on wind speeds, pressure coefficient, exposure coefficient, and gust factor. The wind speed data collected at 25 nationwide weather stations have been modified to be consistent in measuring height, exposure condition as well as averaging time. Having performed Monte Carlo simulation for various heights and site conditions, the statistical models of wind loads were determined, in which Type-I extreme value distribution has been applied. The models also incorporate a reduction factor of 0.85 to account for the reduced probability that the maximum wind speed will occur in a direction most unfavorable to the response of structure.

  • PDF

Aerodynamic Characteristics of Heighter Shapes for a Tract Gust Reduction (선로상 돌풍 감소를 위한 높임침목형상의 공력특성 평가)

  • Rho, Joo-Hyhn;Kim, Jong-Yong;Ku, Yo-Cheon;Yun, Su-Hwan;Kwon, Hyeuk-Bin;Lee, Dong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • The ballast-flying, induced by strong underbody flow of high-speed train, can damage train underbody, wheel and even cause the safety problems. For this reason, a heighter is being used to prevent ballast-flying through underbody flow reduction. In this research, flow field around a heighter is numerically simulated.. And the parametric study of various heighter geometries is performed to find out more effective heighter shape. Through these numerical studies, the relation between the heighter shape and underbody flow is found out. Also new heighter shapes are numerically investigated and their performances of underbody flow reduction are verified.

Field monitoring of wind effects on a super-tall building during typhoons

  • Zhi, Lunhai;Li, Q.S.;Wu, J.R.;Li, Z.N.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.253-283
    • /
    • 2011
  • This paper presents the field measurement results of wind effects on a super-tall building (CITIC Plaza, 391 m high) located in Guangzhou. The field data such as wind speed, wind direction and acceleration responses were simultaneously and continuously recorded from the tall building by a wind and vibration monitoring system during two typhoons. The typhoon-generated wind characteristics including turbulence intensity, gust factor, peak factor, turbulence integral length scale and power spectral density of fluctuating wind speed were presented and discussed. The dynamic characteristics of the tall building were determined based on the field measurements and compared with those calculated from a 3D finite element model of the building. The measured natural frequencies of the two fundamental sway modes of the building were found to be larger than those calculated. The damping ratios of the building were evaluated by the random decrement technique, which demonstrated amplitude-dependent characteristics. The field measured acceleration responses were compared with wind tunnel test results, which were found to be consistent with the model test data. Finally, the serviceability performance of the super-tall building was assessed based on the field measurement results.