• Title/Summary/Keyword: gust of wind

Search Result 177, Processing Time 0.027 seconds

Analysis on the Pattern of Dragging Anchor in Actual Ship (실선 계측에 의한 주묘패턴 분석에 관한 연구)

  • Jung, Chang-Hyun;Kong, Gil-Young;Bae, Byung-Deug;Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.8
    • /
    • pp.505-511
    • /
    • 2009
  • Vessels on anchoring are frequently dragged due to the increased area of wind pressure by enlargement of ship's size and sudden gust of winds in recent years. In the view point of the ship's navigators, the proper measurements corresponding to the dragging of anchor should be taken into account concerned about the time for the occurring of dragging by the external forces such as wind and wave, the pattern and speed of dragging and the possibility of collisions with any other vessels or obstacles. In this paper, it was examined the actual dragging anchor in T.S. HANBADA due to the wind and waves. From this case, it was found the critical external forces by which she was begun to dragged comparing the force by the wind, frictional resistance, drifting force and ship motion moment with the holding power. Also, through the analysis of the dragging pattern, it was known the alteration range of heading angle, swinging width and dragging speed etc.

Analysis of Detection Method for the Weather Change in a Local Weather Radar (국지적 기상 레이다에서의 기상 변화 탐지 방법 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1345-1352
    • /
    • 2021
  • Most of weather radar systems are used to monitor the whole weather situation for the very wide and medium-to-long range area. However, as the likelihood of occurrence of the local weather hazards is increased in recent days, it is very important to detect these wether phenomena with a local weather radar. For this purpose, it is necessary to detect the fast varying low altitude weather conditions and the effect of the ground surface clutter is more evident. Therefore, in this paper, the newly suggested method is explained and analyzed for detection of weather hazards such as the gust and wind shear using the fluctuation of wind velocities and the gradient of wind velocities among range cells. It is shown that the suggested method can be used efficiently in the future for faster detection of weather change through the simple algorithm implementation and also the effect of the ground clutter can be minimized in the detection procedure.

Fuzzy Control of a Sway and Skew of a Spreader by Using Four Auxiliary Cables

  • Lee, Jeong-Woo;Kim, Doo-Hyeong;Park, Kyeong-Taik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1723-1728
    • /
    • 2005
  • This article describes the fuzzy control of the 3-dimensional motion of the container cranes used in dockside container terminals. The container is suspended by four flexible cables via spreader, and due to the disturbances such as the wind and acceleration of cranes, the container undergoes translational(sway) and rotational position errors. And due to the uncertainty of weight and rotational inertia, accurate position control of container crane is difficult to realize. This paper, based on the analysis of 3-dimensional dynamics of container moving systems, describes the design of the fuzzy controller, which does not require the computation time to optimize the distribution of cable tension. The developed controller is shown effective in controlling the container position in the presence of gust and parameter uncertainties.

  • PDF

Time Delay Control of Sway and Skew of the Spreader Suspended by Four Flexible Cables

  • Lee, Jeong-Woo;Kim, Doo-Hyeong;Park, Kyeong-Taik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.540-545
    • /
    • 2004
  • This article describes the time delay control of the 3-dimensional motion of the container cranes used in dockside container terminals. The container is suspended by four flexible cables via spreader, and due to the disturbances such as the wind and acceleration of cranes, the container undergoes translational(sway) and rotational position errors. And due to the uncertainty of weight and rotational inertia, accurate position control of container crane is difficult to realize. This paper, based on the analysis of 3-dimensional dynamics of container moving systems, develops time delay control algorithm [1]. The developed control algorithm is shown effective in controlling the container position in the presence of gust and parameter uncertainties.

  • PDF

Effect of soil-structure interaction on the reliability of hyperbolic cooling towers

  • Liao, Wen;Lu, Wenda;Liu, Renhuai
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.217-224
    • /
    • 1999
  • A semi-stochastic process model of reliability was established for hyperbolic cooling towers subjected to combined loadings of wind force, self-weight, temperature loading. Effect of the soil-structure interaction on reliability was evaluated. By involving the gust factor, an equivalent static scheme was employed to convert the dynamic model to static model. The TR combination rule was used to consider relations between load responses. An analysis example was made on the 90M cooling tower of Maoming, Guangdong of China. Numerical results show that the design not including interaction turns to be conservative.

Fault Tolerant Control of Hexacopter for Actuator Faults using Time Delay Control Method

  • Lee, Jangho;Choi, Hyoung Sik;Shim, Hyunchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.54-63
    • /
    • 2016
  • A novel attitude tacking control method using Time Delay Control (TDC) scheme is developed to provide robust controllability of a rigid hexacopter in case of single or multiple rotor faults. When the TDC scheme is developed, the rotor faults such as the abrupt and/or incipient rotor faults are considered as model uncertainties. The kinematics, modeling of rigid dynamics of hexacopter, and design of stability and controllability augmentation system (SCAS) are addressed rigorously in this paper. In order to compare the developed control scheme to a conventional control method, a nonlinear numerical simulation has been performed and the attitude tracking performance has been compared between the two methods considering the single and multiple rotor faults cases. The developed control scheme shows superior stability and robust controllability of a hexacopter that is subjected to one or multiple rotor faults and external disturbance, i.e., wind shear, gust, and turbulence.

Design of a Robust Adaptive Control Scheme for Longitudinal Motion of Vehicles (직진 주행 차량의 강인 적응제어 구조설계)

  • Kim, Dong-Hun;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.31-37
    • /
    • 2001
  • A robust adaptive technique for the longitudinal control of a platoon of automated vehicles is presented. A nonlinear model is used to represent the dynamics of each vehicle within the platoon. The external disturbances such as wind gust and a disturbance term due to engine transmission variations and so on are considered. The state observer is used to avoid direct measurement of the relative velocity or acceleration between the controlled and leading vehicles or the controlled vehicles's acceleration. The proposed controller guarantees to recover platoon stability in operation even if a speed dependent spacing policy is adopted, which incorporates a constant time headway in addition to the constant distance. It is shown that the proposed observer is exponentially stable, and the at the robust adaptive controller is stable. The simulation results demonstrate excellent tracking even in the presence of disturbances.

  • PDF

The Santa Ana winds of Southern California: Winds, gusts, and the 2007 Witch fire

  • Fovell, Robert G.;Cao, Yang
    • Wind and Structures
    • /
    • v.24 no.6
    • /
    • pp.529-564
    • /
    • 2017
  • The Santa Ana winds occur in Southern California during the September-May time frame, bringing low humidities across the area and strong winds at favored locations, which include some mountain gaps and on particular slopes. The exceptionally strong event of late October 2007, which sparked and/or spread numerous fires across the region, is compared to more recent events using a numerical model verified against a very dense, limited-area network (mesonet) that has been recently deployed in San Diego County. The focus is placed on the spatial and temporal structure of the winds within the lowest two kilometers above the ground within the mesonet, along with an attempt to gauge winds and gusts occurring during and after the onset of October 2007's Witch fire, which became one of the largest wildfires in California history.

Investigation of the Downwash Induced by Rotary Wings in Ground Effect

  • Tanabe, Yasutada;Saito, Shigeru;Ooyama, Naoko;Hiraoka, Katsumi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.20-29
    • /
    • 2009
  • There are concerns about the influence of the gust wind caused by helicopters affecting the moving vehicles while hovering over the road during rescue activities. For the understanding of such complicated flow. numerical simulation of a rotor hovering above the ground has been carried out, changing the rotor/ground clearances. The rotor thrust is kept constant. and the rotor control is determined by trim adjustments incorporated into the CFD algorithm. Collective pitch angle and the required power decreases with the rotor/ground clearance which agrees with experience. Changes of the flowfield near the rotor with regard to the rotor height are investigated based on the calculated results.

Design of Robust Adaptive Controllers for Longitudinal Motion of Vehicles (직진 주행 차량의 강인 적응제어기 설계)

  • 김동헌;김응석;김홍필;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.113-113
    • /
    • 2000
  • A robust adaptive technique for the longitudinal control of a platoon of automated vehicles is presented. A nonlinear model is used to represent the vehicle dynamics of each vehicle within the platoon. The external disturbance such as wind gust and a disturbance term due to engine transmission variations and so on are considered. The state observer is used to avoid direct measurement of the relative velocity or acceleration between the controlled and leading vehicles or the controlled vehicle's acceleration. It is shown that platoon stability can be recovered in operation even if a speed dependent spacing policy is adopted, which incorporates a constant time headway in addition to the constant distance. The simulation results demonstrate excellent tracking even in the presence of disturbances.

  • PDF