• Title/Summary/Keyword: guided tissue regeneration.

Search Result 210, Processing Time 0.027 seconds

Effects of root trunk length after GTR on clinical outcomes (하악 제1대구치 치근본체의 길이가 조직유도재생술의 임상결과에 미치는 영향)

  • Pi, Sung-Hee;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.427-434
    • /
    • 2006
  • The form of furcation influence both the pathogenesis of periodontal destruction and therapeutic results. The present study was performed to evaluate the effect of root trunk length on clinical outcomes of guided tissue regeneration. Total 30 mandibular first molars were evaluated in this study. Probing pocket depth, clinical attachment level, vertical defect depth and horizontal defect depth were measured at baseline and 6 month after GTR. Correlation coefficients between root trunk length and other clinical measurement were analyzed. The results of this study were as follows 1. The mean root trunk length in lower 1st molar was 2.15 mm. 2. Probing pocket depth, clinical attachment level, vertical defect depth and horizontal defect depth were significantly reduced at 6 month postoperatively compared to values of baseline 3. Correlation coefficient between root trunk length and vertical defect depth at baseline was 0.406 showing the positive correlation 4. Correlation coefficient between root trunk length and horizontal defect depth at baseline was -0.463 showing the negative correlation. 5. Correlation coefficient between root trunk length and decrease of horizontal defect depth after GTR was 0.654 showing the positive correlation. In conclusion, the root trunk length maybe effector for clinical outcome after guided tissue regeneration.

Drug loaded biodegradable membranes for guided tissue regeneration (약물함유 생체분해성 차폐막의 유도조직재생에 관한 연구)

  • Kim, Dong-Kyun;Lee, Seung-Jin;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.192-209
    • /
    • 1995
  • The purpose of this study was to evaluate drug-loaded biodegradable membranes for guided tissue regeneration(GTR). The membranes were made by coating mesh of polyglycolic acid(PGA) with polylactic acid(PLA) containing 10% flurbiprofen or tetracycline. The thickness of membrane was $150{\pm}30{\mu}m$, and the pore size of surface was about $8{\mu}m$ in diameter. The release of drugs from the membrane was measured in vitro. Cytotoxity test for the membrane was performed by gingival fibroblast cell culture, and the tissue response was observed after implant of membrane into the dorsal skin of the rat for 8 wks. Ability to guided tissue regeneration of membranes were tested by measuring new bone in the calvarial defects(5mm in diameter) of the rat for 5 weeks. The amount of flurbiprofen and tetracycline released from membrane were about 30-60% during 7 days. Minimal cytotoxity was observed in the membrane except 20% drug containing membrane. In histologic finding of rat dorsal skin, many inflammatory cells were observed around e-PTFE, polyglactin 910 and PLAPGA membrane after 1 or 2 weeks. PLA-PGA membrane was perforated by connective tissue after 4 or 6 weeks, and divided as a segment at 8 weeks. In bone regeneration guiding potential test, tetracycline loaded membrane was most effective (p

  • PDF

Guided Bone Regeneration using Fibrin Glue in Dehiscence or Fenestration Defects Occurred by Maxillary Anterior Implants: Case Report (상악 전치부 임플란트 식립에 의한 열개 및 천공형 골결손 발생 시 조직 접착제를 이용한 골유도 재생술: 증례보고)

  • Chee, Young-Deok;Seon, Hwa-Gyeong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.3
    • /
    • pp.277-290
    • /
    • 2012
  • Dental implants are universal restorative method on edentulous site in oral cavity and generally recognized by patients as well as clinicians. Rapid bone resorption of labial portion of maxillary anterior area is performed due to dental trauma, chronic periodontitis, and so on. Accordingly, Implants on maxillary anterior alveolar ridge with narrow labiopalatal width would lead to bony defects of dehiscence or fenestration. In this case, guided bone regeneration procedure is used to augment maxillary anterior alveolar ridge. It can have mechanical and biological advantages to mix tissue adhesive with bone graft materials in guided bone regeneration procedure. In these cases, when the dehiscence or fenestration defects was occurred by dental implants on maxillary anterior alveolar ridge with narrow labiopalatal width, guided bone regeneration procedures were performed with various combination of particle bone graft materials(allograft, xenograft, and alloplast) mixed with fibrin glue, excepting autogerous bone. We reported that all of 4 cases showed favorable alveolar ridge augmentations.

Collagen electrospun chitosan-PLLA membrane for guided bone regeneration

  • Baek, Hyon-Jin;Kim, Kyung-Hwa;Jung, Ji-Eun;Lee, Ju-Yeon;Ku, young;Chung, Chong-Pyung;Lee, Seung-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.229.1-229.1
    • /
    • 2003
  • Recently, the barrier membranes have been applied for regenerating bone surrounding peri-implant defects in guided bone regeneration(GBR). GBR membrane should provide mechanical support sufficient to withstand in vivo forces and maintain wound space for bone regeneration. The ability to exclude unwanted tissues of cells(connective tissue and epithelium) is needed. In addition large surface area is conductive to tissue ingrowth. The search for ideal materials that biocompatible, bioresorbable and can support the growth and phenotypic expression of osteoblasts is a major challenge in the biomedical application for the repair of bone defects. (omitted)

  • PDF

Leukocyte platelet-rich fibrin in endodontic microsurgery: a report of 2 cases

  • Mariana Domingos Pires;Jorge N.R. Martins;Abayomi Omokeji Baruwa;Beatriz Pereira;Antonio Ginjeira
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.2
    • /
    • pp.17.1-17.8
    • /
    • 2022
  • Endodontic microsurgery is a predictable treatment option when orthograde treatment or retreatment is unsuccessful or unfeasible. However, when there is a gross compromise of periapical bone, achievement of bone regeneration after the surgical procedure may be hampered. In such cases, the application of guided tissue regeneration principles, with adjunctive use of leukocyte platelet-rich fibrin to fill the bone defect as a bone substitute and as a membrane to cover the site, provides a cost-effective solution with the benefits of accelerated physiological healing and reduced post-surgical pain and discomfort. This case report presents 2 cases of endodontic microsurgery of the upper lateral incisors with loss of buccal cortical plate, where platelet-rich fibrin was successfully applied.

COMPARATIVE STUDY OF AUTOGENOUS BONE GRAFT AND GUIDED TISSUE REGENERATION IN THE TREATMENT OF PERIODONTAL DEFECT IN DOGS (성견 치조골 결손부에 자가골이식과 조직유도재생막을 이용한 치주치료시 치유효과에 관한 비교연구)

  • Hong, Ki-Seok;Kim, Jong-Yeo;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.1
    • /
    • pp.205-216
    • /
    • 1994
  • The goal of periodontal therapy is the regeneration of the periodontium lost by periodontal disease. The purpose of this study was to evaluate the regenerative potential of the autogenous bone graft and guided tissue regeneration in the treatment of periodontal bony defect in dogs. Experimental periodontitis were induced in the mandibular left 3rd premolar and right 3rd and 4th premolars of 5 dogs using orthodontic ligature wire. After 6 weeks, the ligature wire removed, surgical procedure were performed as follows. 1) control group : Flap operation(Mn.Lt 3rd premolar) 2) experimental group I : Flap operation + autogenous bone graft (Mn.Rt. 3rd premolar) 3) experimental group II : Flap operation + Gore-Tex membrane (Mn.Rt. 4th premoalr) Thereafter, dogs were sacrificed on the 1,2,4,8,16th week and the specimens were prepared and stained with hematoxyline-eosin stain for the light microscopic examination. The results of this study were as follows. 1. The apical migration of junctional epithelium was most remarkable in the flap operation and the experimental group II was less than the experimental group I. 2. In the formation of new alveolar bone, it was found in experimental group I,II and experimental group I is more than II. In the control group, few bone formation was found. 3. In the formation of new cementum, it was found in experimental group I,II and experimental group II is more than I. So, the periodontal therapy combined with autogenous and guided tissue regeneration will be produce the periodontal regeneration.

  • PDF

Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects

  • Kim, Jwa-Young;Yang, Byoung-Eun;Ahn, Jin-Hee;Park, Sang O;Shim, Hye-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.539-546
    • /
    • 2014
  • PURPOSE. Silk fibroin (SF) is a new degradable barrier membrane for guided bone regeneration (GBR) that can reduce the risk of pathogen transmission and the high costs associated with the use of collagen membranes. This study compared the efficacy of SF membranes on GBR with collagen membranes (Bio-$Gide^{(R)}$) using a rat calvarial defect model. MATERIALS AND METHODS. Thirty-six male Sprague Dawley rats with two 5 mm-sized circular defects in the calvarial bone were prepared (n=72). The study groups were divided into a control group (no membrane) and two experimental groups (SF membrane and Bio-$Gide^{(R)}$). Each group of 24 samples was subdivided at 2, 4, and 8 weeks after implantation. New bone formation was evaluated using microcomputerized tomography and histological examination. RESULTS. Bone regeneration was observed in the SF and Bio-$Gide^{(R)}$-treated groups to a greater extent than in the control group (mean volume of new bone was $5.49{\pm}1.48mm^3$ at 8 weeks). There were different patterns of bone regeneration between the SF membrane and the Bio-$Gide^{(R)}$ samples. However, the absolute volume of new bone in the SF membrane-treated group was not significantly different from that in the collagen membrane-treated group at 8 weeks ($8.75{\pm}0.80$ vs. $8.47{\pm}0.75mm^3$, respectively, P=.592). CONCLUSION. SF membranes successfully enhanced comparable volumes of bone regeneration in calvarial bone defects compared with collagen membranes. Considering the lower cost and lesser risk of infectious transmission from animal tissue, SF membranes are a viable alternative to collagen membranes for GBR.

임프란트치료와 골유도재생술

  • Kim, Byeong-Ok
    • The Journal of the Korean dental association
    • /
    • v.39 no.10 s.389
    • /
    • pp.819-824
    • /
    • 2001
  • 충분한 골양이 존재해야 한다는 것은 임프란트를 식립하는데 있어서 중요힌 선결조건이므로, 임프란트를 식립하기 전이나 식립하는 도중에 치조제의 높이와 고경을 증대시키기 위하여 조직유도재생술 (Guided Tissue Regeneration, GTR)의 생물학적 원리에 기초를 둔 골유도재생술(Guided Bone Regeneration, GBR)이 필요하다. 이 장에서는 임프란트치료시 골유도재생술을 이용하여 임프란트 주위의 골결손부에 대한 치료로서 현재 이용되고 있는 이식재의 종류와 그 임상적 응용, 그리고 결손부 주위에서 골 생성을 향상시크는 방법에 대하여 살펴보고자 한다.

  • PDF

Guided tissue regeneration using barrier membranes on the dehiscence defects adjacent to the dental implants (치과용 임플란트 주위 열손 결손에 대한 차폐막의 유도조직재생에 관한 연구)

  • Lee, Dong-Ho;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.301-320
    • /
    • 1995
  • The purpose of this study was to evaluate a new biodegradable membrane - atelocollagen as a guided tissue regeneration barrier on the dehiscence defects adjacent to the dental implants. 3 beagle dogs were selected for this study and all the mandibular premolars($P_1,P_2,P_3&P_4$) were extracted. Twelve weeks after the extraction, the edentulous ridges were formed to be placed the titanium plasma-sprayed IMZ implants. Four implant osteotomies were performed on each side of the mandible. The osteotomies were placed facially in the edentulous ridges to approximate an actual dehiscence defect as closely as possible, The standardized dehiscence defects were created 3 mm in width and 4 mm in height by osteotomy. A total 24 implants were placed. e-PTFE, ateloco11agen and $Collatape^{(R)}$ were placed to cover the defects and the one defect served as a control, not covered any membrane. By random selection, three dogs were sacrificed at 2 weeks, 4weeks and 8 weeks after fixation with 3% glutaraldehyde. A week before sacrificing, 8-week dog was infused intravenously with oxy-tetracycline 30mg/kg. The left mandibular blocks were used for full decalcified histologic preparation and the right mandibular blocks were selected for undeca1cified preparation, At 2 weeks, the regenerated bone of e-PTFE and atelocollagen groups appeared to be more dense than other groups and the percentage of bone defect fill was highest for e-PTFE and follwed by ateloco1lagen group. However, the $Collatape^{(R)}$ and control groups showed a little new bone formation. $Collatape^{(R)}$ was almost degraded within 2 weeks. At 4 weeks, the regenerated new bone were much greater and denser than at 2 weeks for e-PTFE and ateloco11agen group. Although a part of atelocollagen bagan to be degraded at the margin and surrounded by foreign body giant cells related to foreign body reaction, it was generally intact and the regenerated new bone was shown much more than at 2 weeks. The amount of new bone in $Collatape^{(R)}$ and control groups at 4 weeks were similar to that of 2 weeks group. At 8 weeks, the regenerated bone was matured and observed along the implant fixture. Direct new bone formation and calcium deposits beneath the e-PTFE were observed. No further bone growth was seen in the $Collatape^{(R)}$ and control groups. In reflected fluoromicrcocopic observation, the osteogenic activity was pronounced between e-PTFE membrane and the old bone. High osteogenic activity was also observed in atelocol1agen group. This study suggested that the ateloco11agen as well as e-PTFE could be used for guided tissue regeneration on dehiscence defects adjacent to the dental implants. But the $Collatape^{(R)}$ was completely resorbed within 2 weeks and was not a suitable membrane for guided bone regeneration.

  • PDF