• Title/Summary/Keyword: guided inquiry

Search Result 39, Processing Time 0.023 seconds

A Phenomenological Perspective and Discovery of Meaning in Nurse's Experience in Clinics (병원 근무 간호사의 경험)

  • Joung, Kyoung-Hwa
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.9 no.4
    • /
    • pp.599-613
    • /
    • 2003
  • Purpose: The ultimate aim of the inquiry was to discover the essence of nurse's experience and promote understanding. Method : Guided by Colaizzi's method - 1. Description of the phenomena of interest by the reader. 2. collection of subject's description of the phenomena, 3. Reading all the subject's descriptions of the phenomenon, 4. Returning the original transcripts and extracting significant statements, 5. Trying to spell out the meaning of each significant statements, 6. Organizing the aggregate formalized meanings into clusters of themes. 7. Writing an exhaustive description, 8. Returning to the subjects for validation of the description, 9. If new data fare revealed during the validations incorporating them into an exhaustive description. The participants in this study were eight are nurses working for clinics. This strategies for data collecting were needed : deep face to face interview. Results : 6 cluster of themes are : 1. the heavy pressure, 2. the pride and the royal summons, 3. the powerlessness, 4. the hope, 5. the tiresome. 6. the distressed feeling. Conclusion : The results of the this study would help us to understand nurses in clinics, make direction for nursing education, and identify need for continuing inquiry.

  • PDF

A Study on the Development of Instruction Model on Project inquiry and Materials for the New Subject of 'Mathematical Task Inquiry' in the curriculum revised in 2015 (2015 개정 <수학과제 탐구> 신설 과목 운영을 위한 과제 탐구의 수업 모형 및 자료 개발 연구)

  • Hwang, Hye Jeang;Kim, Ju Mi
    • Communications of Mathematical Education
    • /
    • v.32 no.3
    • /
    • pp.363-383
    • /
    • 2018
  • The subject of 'Mathematical Task Inquiry' was introduced newly in the curriculum revised in 2015. The subject is dealt with after completing the subject of 'mathematics' to be dealt with in the tenth grade. Its main content is comprised of the understanding and learning of the purpose and procedure of inquiry task and of study ethics, and its educational goal is to enforce the prior mathematical knowledge and to obtain the ability to select interesting topics that combine mathematics with other subjects. However the textbook of the subject does not exist, and teachers should handle with the subject with responsibility for their own ways. Because of this reason, this study is to develop an instruction model on project(task) inquiry model and materials. Namely, according to the model, students is guided to select and decide the subject of the task, and develop the task for themselves, solve it with peers in cooperation, and announce the solution and their feelings. During those students' exploration and activities, the role of teachers is to guide students to complete their work. By the way, in order to develop more creative tasks that is appropriate to their academic and cognitive level, this study conducted the experimentation for the subject of 9 students (6 girls and 3 boys), who are scheduled to advance to the 11 grade of J high school located in G domestic. The experimentation was consisted of three class and after the third class, the semi-structured interview was conducted immediately for the students.

An Ethnorgraphic Study on the Elementary Science Classes of the 5th grade Students (초등학교 5학년 자연과 실험 수업에 대한 문화기술적 연구)

  • 최옥자;김효남;백성혜
    • Journal of Korean Elementary Science Education
    • /
    • v.18 no.2
    • /
    • pp.35-46
    • /
    • 1999
  • The most of elementary school science textbook contents are composed of observation and experiment activities. When students study natural phenomena, observation and experiment are st rongly emphasized to improve understanding of scientific concepts and inquiry abilities. The purpose of this study is deep understanding about experimental science classes. This ethnographic study is conducted by observations of experimental science classes in natural setting and interviews of teachers, students of the 5th grade. The conclusions of this study are as follows: First, the general process of the elementary science experimental classes is 'identifying learning purposes -1 planning experiments -1 predicting the results -1 experimenting-t summarizing the results.' The experiments are conducted by group activities and the teachers conceived that the me st difficult step considered by students is 'planning experiments'. Second, students like hands-on activities, but they feel difficulty on less guided experiments. Students perform results oriented-activities. Third, in group activities, students prefer to work with the same gender or collaborative peers.

  • PDF

Elementary Teachers' Perceptions on the Experiment of Making a Model of Volcanic Activity ('화산 활동 모형 만들기' 실험에 대한 초등 교사의 인식)

  • Lee, Gyuho
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.617-629
    • /
    • 2018
  • The purpose of this study was to explore the elementary school teachers' perceptions about making a model of volcanic activity. Thirty elementary teachers participated in the study after they in which they conducted the experiment of "Making a Model of Volcanic activity". A questionnaire was used to investigate how the teachers understood the strengths and weaknesses of the experiment in terms of the goals of school science inquiry. The results showed that 50-60% of the teachers were able to conduct the experiment as guided in the textbook regardless of their career or area of concentration. The teachers perceived that the experiment of current textbook was safe and useful for students to develop their creativity. However, they pointed out three major weaknesses of the textbook experiment: First, the textbook experiment does not clearly present the main purpose of the activity. Second, it does not appropriately reflect the natural volcanic activity. Third, it is a merely simple craft activity. In addition, the teachers agreed that the main goals of school science inquiry are the application of scientific knowledge, development of inquiry skills and cultivation of student's curiosity. However, the teachers perceived that the experiment of current textbook did not meet these three goals. They suggest that the experiment reflect the nature of real volcanic activities.

Scientifically Gifted Students' Perception of the Impact of R&E Program based on KAIST Freshmen Survey (R&E 프로그램을 체험한 과학영재들의 사사교육 프로그램 효과에 대한 인식: KAIST 신입생을 중심으로)

  • Kim, Kyoung-Dae;Sim, Jae-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.4
    • /
    • pp.282-290
    • /
    • 2008
  • The Research and Education (R&E) program was a year-long, apprenticeship and research-based program that was guided by mentors who are scientists or science teachers. The objective of the R&E program was to help scientifically gifted students in Korea Science Academy (KSA) and Science High Schools (SHS) to enhance abilities in creative thinking, scientific inquiry, problem solving, positive attitude towards scientists, and promoting cooperative research and interests in science and technology. In this study, the impact of the R&E program on the goals of 182 gifted college students in KAIST was evaluated using Likert-type items and multiple-choice method approach that provided a more comprehensive evaluation of the program's impact on science attitudes, creative thinking, scientific inquiry, and interests in science and technology. The results indicated a positive impact on cooperative research, gaining knowledge on the research topic, attitude towards scientists, interest in science and technology, scientific inquiry, and creative thinking in that order. There were rather remarkable and meaningful differences in science inquiry (p<.05), and scientific knowledge (p<.01), between the two groups of KAIST freshmen who came from SHS and KSA in 2006. Implications for science apprenticeship or a research-based mentorship program and their respective evaluations are also discussed.

Development and Application about Program for Enlightened and Productive Creativity by Using Moire Pattern (무아래 패턴을 이용한 깨달음과 생산적 창의성 신장 프로그램 개발과 적용)

  • Yuk, Keun-Cheol;Kim, Yong-Guk;Cramond, Bonnie
    • Journal of Gifted/Talented Education
    • /
    • v.17 no.1
    • /
    • pp.193-213
    • /
    • 2007
  • We present a creative program model for encouraging the creative ability of gifted students by using overlapped patterns found in every day life. This model is based on the basic concept that the purpose of physics education is enlightenment from around the world. Combining both the Western perspective of creativity as productivity and the Eastern perspective of creativity as enlightenment, a Program for Enlightened and Productive Creativity(PEPC) for teaching inquiry was devised. This Program for Enlightened and Productive Creativity describes stages through which a student is guided to solve a problem using increasingly complex observation, inquiry, and experimentation. The use of this model in teaching is illustrated through a physics lesson of moire patterns using overlapping patterns found in our every day life. A case is made that PEPC can be applied to teaching general students as well as gifted students and in different content areas. PEPC model is applied to general students in middle school, scientifically gifted students and physics teachers.

Study of Perception on Programming and Computational Thinking and Attitude toward Science Learning of High School Students through Software Inquiry Activity: Focus on using Scratch and physical computing materials (소프트웨어 활용 탐구 활동을 통한 고등학생의 프로그래밍과 컴퓨팅 사고력에 대한 인식 변화와 과학 학습에 대한 태도 조사 -스크래치와 피지컬 컴퓨팅 교구의 활용을 중심으로-)

  • Hwang, Yohan;Mun, Kongju;Park, Yunebae
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.2
    • /
    • pp.325-335
    • /
    • 2016
  • Software (SW) education is guided by the government to operate not only computer subject matter but also related subject matter. SW education is highlighted in the 2015 Revised Curriculum and Guide for Operating SW Education. SW education is related with science education. For example, education on algorithms employing SW and activities using sensors/output control can be an effective strategy for scientific inquiry. The method can also be applied in developing Computational Thinking (CT) in students. In this study, we designed lessons to solve everyday scientific problems using Educational Programming Language (EPL) SW and physical computing materials and applied them to high school students. We conducted surveys that were modified from questionnaires of Internet application capability and based on the standard of accomplishment of SW education as well as elements of CT to find out the change in perceptions on programming and CT of students. We also conducted a survey on students' attitude toward science learning after an SW inquiry activity. In the results, perceptions on programming and CT of students were improved through lessons using unplugged activity, EPL SW, and physical computing. In addition, scores for interest, self-directed learning ability, and task commitment were high.

Instructional Effect of Infographics Construction in Elementary Science (초등 과학 수업에서 학생주도 인포그래픽 구성 활동의 효과)

  • Lee, Heewoo;Lim, Heejun
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.5
    • /
    • pp.625-635
    • /
    • 2019
  • Students are exposed to many visual representations in various visual cultures. Infographics combining visual representations and writing can effectively convey information. Also it can be efficient ways for teachers to focus on important contents. Students can use infographics as a method directly to organize information. Therefore, the infographics that students use both writings and images directly and visually will be more effective on elementary school science classes than the workbook. Classes are guided with the same scientific inquiry and experiment written on the science textbook. The experimental group students organized scientific inquiry by infographics, while the comparison group students still used the workbook. First, the types of infographics are determined by what students want to explain. Based on learning objectives, students used the right type of infographics to effectively convey their focus on information. Second, the infographics organizing activities used in the classes had a significant effect on students' academic achievement. Also, the infographics organizing classes are positively associated to science-related attitudes, including such+ as 'Leisure Interest in Science', 'Adoption of Scientific Attitudes', and 'Attitude to Scientific Inquiry'. Third, visual tendency and classroom treatments had no interactions, but the experimental group had a positive impact regardless of student's characteristics. Fourth, experimental group showed positive attitudes toward to students' perception of infographics. Since some of students had difficulties organizing information in infographics, further research is required to enable students to reduce their burden in application of infographics.

A Case Study of Middle School Students' Abductive Inference during a Geological Field Excursion (야외 지질 학습에서 나타난 중학생들의 귀추적 추론 사례 연구)

  • Maeng, Seung-Ho;Park, Myeong-Sook;Lee, Jeong-A;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.9
    • /
    • pp.818-831
    • /
    • 2007
  • Recognizing the importance of abductive inquiry in Earth science, some theoretical approaches that deploy abduction have been researched. And, it is necessary that the abductive inquiry in a geological field excursion as a vivid locale of Earth science inquiry should be researched. We developed a geological field trip based on the abductive learning model, and investigated students' abductive inference, thinking strategies used in those inferences, and the impact of a teacher's pedagogical intervention on students' abductive inference. Results showed that students, during the field excursion, could accomplish abductive inference about rock identification, process of different rock generation, joints generation in metamorpa?ic rocks, and terrains at the field trip area. They also used various thinking strategies in finding appropriate rules to construe the facts observed at outcrops. This means that it is significant for the enhancement of abductive reasoning skills that students experience such inquiries as scientists do. In addition, a teacher's pedagogical interventions didn't ensure the content of students' inference while they helped students perform abductive reasoning and guided their use of specific thinking strategies. Students had found reasoning rules to explain the 01: served facts from their wrong prior knowledge. Therefore, during a geological field excursion, teachers need to provide students with proper background knowledge and information in order that students can reason rues for persuasive abductive inference, and construe the geological features of the field trip area by the establishment of appropriate hypotheses.

Analysis of the Elementary School Students' Views about Lab-based Science Learning (과학 실험 수업에 대한 초등학생들의 인식 분석)

  • Cho, Hyun-Jun;Yang, Il-Ho;Jeong, Jae-Hoon;Shin, Ae-Kyung;Sohn, Jung-Joo
    • Journal of Korean Elementary Science Education
    • /
    • v.27 no.2
    • /
    • pp.117-133
    • /
    • 2008
  • The purpose of this study was to investigate the elementary students' views about lab-based science learning. For the purpose of this study, semi-structured interviews were conducted with thirty sixth grade students in 12 classes from two elementary schools located in Daegu City. The interview contents consisted of three major categories. The first category was related to attitude toward science lab, the second was related to lab-based science learning which had four sub-categories; recognizing lesson object, planning experiment, performing experiment, drawing conclusion in lab-based science learning in which the students had ordinary have views and expectations, and the last category was related to students' difficulties and something need to be improved in lab-based science learning. In-depth interviews were performed individually and the interviews were recorded. From the interviews, we found that students, in first category, do like lab-activities more than lectures or instruction-based activities in textbook. Students, in second category, wanted generally more discussion for their own activities rather than teacher's instruction and they wanted teacher' mediation conflicts within small groups and comments for students' experiment results. In the last, most of students had fears for some dangerous reagents and accidents. Based on the results, the study suggested that teacher need to give their students to autonomous discussion opportunities to design and interpret data through teacher' guided questions in inquiry steps, to produce some intimate atmosphere for active interaction in small groups, and to teach the safety education on some dangerous reagents.

  • PDF