• Title/Summary/Keyword: gtfB

Search Result 22, Processing Time 0.022 seconds

Antibacterial and Antibiofilm Activities of Diospyros malabarica Stem Extract against Streptococcus mutans (Streptococcus mutans에 대한 인도감나무 줄기 추출물의 항균활성 및 생물막 형성 억제 효과)

  • Kim, Hye Soo;Lee, Sang Woo;Sydara, Kongmany;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.90-96
    • /
    • 2019
  • The objective of this study was to evaluate the potential of Diospyros malabarica stem extract, a natural materials, in oral health material. With this aim in mind, thin layer chromatography (TLC), TLC-bioautography, high-performance liquid chromatography (HPLC), electrospray ionization-mass spectrometry (ESI-MS), scanning electron microscopy (SEM), and real-time qPCR were performed. The antibacterial activity of D. malabarica stem extract against Streptococcus mutans KCTC3065 was confirmed in an n-hexane fraction with low polarity. The molecular weight of the antibacterial compound was estimated to be 188 by ESI-MS analysis. The inhibitory effects of the extract on biofilm formation and gene expression related to biofilm formation of S. mutans were determined by SEM and real-time PCR analysis. The extract inhibited the formation of S. mutans biofilms at D. malabarica stem extract concentrations of 1 mg/ml, as shown by SEM. The real-time PCR analysis showed that the expression of the gtfC gene, which is associated with biofilm formation, was significantly decreased in a dose-dependent manner. Based on the above results, it can be concluded that D. malabarica stem extracts, a natural materials, can be used in oral health products to suppress the formation of biofilms by inhibiting tooth adhesion of S. mutans, a causative agent of dental caries.

THE COMPARISON OF STREPTOCOCCUS MUTANS ISOLATED FROM OCCLUSAL SURFACES OF CARIES AND NON-CARIES TEETH (우식치아와 정상치아의 교합면에서 분리한 Streptococcus mutans의 비교)

  • Park, Ho-Won;Jung, Tae-Sung;Jung, Jin;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.1
    • /
    • pp.129-141
    • /
    • 2001
  • When oral microorganisms were sampled from occlusal surfaces of caries and non-caries teeth, $3.43\times10^5$ CFU and $3.47\times10^3$ CFU of bacteria were counted on MSB agar plates, respectively. All the 20 colonies isolated from a caries surface were Streptococcus mutans but, only two of 20 colonies were identified as Streptococcus mutans by API test. S. mutans SM1 from caries tooth and S. mutans SM2 from non-caries tooth showed the same results except for $\alpha-galactosidase$ activity on sugar fermentation tests and biochemical tests. For the bacterial replication, both SM1 and SM2 were actively multiplicated at pH 5.5. And the viability of SM1 was high at 20% of sucrose, while that of SM2 was high at 5% of sucrose in the media. SM1 actively replicated at 16mM of $CaCl_2$, 160mM of KCl, and 6.4mM of $MgCl_2$, and the replication of SM2 was increased at 16mM of $CaCl_2$, 40mM of KCl, 6.4mM of $MgCl_2$. At 1mM of sodium bicarbonate and sodium phosphate, both bacteria were actively multiplicated. SM1 and SM2 were actively replicated at 1mM and 10mM of Tris, respectively. For potassium phosphate buffer, SM1 grew well proportionally to the concentration up to 100mM, while the growth of SM2 were inhibited by the increase of concentration. The 4.6 kb of gtf gene was amplified with a pair of primer, gtfB-F961 and gtfC-R5574 by polymerase chain reaction from the chromosomal DNA of SM1 and SM2. When 4.6kb bands were eluted from gel and were treated with restriction enzyme, EcoR I produced the same RFLP like 0.8kb and 3.8kb of DNA fragments for S. mutans GS-5, SM1 and SM2. By Hind III, the PCR products weren't digested for S. mutans GS-5 and SM1, but 3 fragments such as 2.4kb, 1.8kb and 400bp were examined for SM2. These results indicated the difference between gtf genes of SM1 and SM2. BamH I treatment showed 4 fragments for SM1 and SM2, while the 3 fragments for S. mutans GS-5. The PCR products were not digested by Kpn I, Sma I, Xho I and Pst I.

  • PDF

Anticaries Effect of Ethanol Extract of Terminalia chebula

  • Lee, Moonkyung;Hwang, Young Sun
    • Journal of dental hygiene science
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2021
  • Background: Dental caries is mainly composed of various cellular components and is deposited around the tooth surface and gums, causing a number of periodontal diseases. Streptococcus mutans is commonly found in the human oral cavity and is a significant contributor to tooth decay. The use of antibacterial ingredients in oral hygiene products has demonstrated usefulness in the management of dental caries. This study investigated the anticaries effect of the ethanol extract of Terminalia chebula (EETC) against S. mutans and their cytotoxicity to gingival epithelial cells. Methods: The EETC was prepared from T. chebula fruit using ethanol extraction. Disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and colony forming unit (CFU) were analyzed to investigate the antimicrobial activity of the EETC. Glucan formation was measured using the filtrate of the bacterial culture medium and sucrose. Gene expression was analyzed using reverse transcription-polymerase chain reaction (RT-PCR). Cytotoxicity was analyzed via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Results: The antibacterial activity of the EETC was explored using disc diffusion and CFU measurements. The MIC and MBC of the EETC were 10 and 20 ㎍/ml, respectively. EETC treatment decreased insoluble glucan formation by S. mutans enzymes and also resulted in reduced glycosyltransferase B (gtf B), gtf C, gtf D, and fructosyltransferase (ftf), expressions on RT-PCR. In addition, at effective antibacterial concentrations, EETC treatment was not cytotoxic to gingival epithelial cells. Conclusion: These results demonstrate that the EETC is an effective anticaries ingredient with low cytotoxicity to gingival epithelial cells. The EETC may be useful in antibacterial oral hygiene products for the management of dental caries.

Role of HtrA in growth of Streptococcus mutans under acidic environment (산성환경에서 S. mutans의 생육에 미치는 HtrA gene의 영향)

  • Kang, Kyung-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.498-500
    • /
    • 2009
  • 본 연구에서는 한국인 아동의 우식치아로부터 분리한 S. mutans K7으로부터 HtrA gene을 동정하고 HtrA expression이 산성환경하에서 S. mutans의 생육에 미치는 영향을 알아보았다. S. mutans K7의 HtrA mutant strain은 산성환경에서 parental strain과 비교하였을 때, 생육에 있어서 상당한 차이를 나타내었다. 또한 Biofilm formation에 관여하는 GtfB, 와 GtfC의 발현량도 현저히 줄어들었다. 그리고 HtrA mutant strain에 HtrA gene을 삽입하여 HtrA의 발현량을 회복하였을 경우에는 acid stress하에서 control과 같은 nomal growth phenotype을 회복하였다. 이러한 결과들은 S. mutans K7에서 HtrA가 acid stress동안에 중요한 역할을 담당함을 제시하고 있다.

  • PDF

Anti-Biofilm Effect of Egg Yolk Phosvitin by Inhibition of Biomass Production and Adherence Activity against Streptococcus mutans

  • Kim, Hyeon Joong;Lee, Jae Hoon;Ahn, Dong Uk;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.1001-1013
    • /
    • 2020
  • The formation of biofilms on the enamel surface of teeth by Streptococcus mutans is an important step in dental plaque formation, demineralization, and early caries because the biofilm is where other bacteria involved in dental caries attach, grow, and proliferate. The objectives of this study were to determine the effect of phosvitin (PSV) on the biofilm formation, exopolysaccharides (EPS) production, adherence activity of S. mutans, and the expression of genes related to the compounds essential for biofilm formation (quorum-sensing inducers and components of biofilm matrix) by S. mutans. PSV significantly reduced the biofilm-forming activity of S. mutans and increased the degradation of preformed biofilms by S. mutans. PSV inhibited the adherence activity of S. mutans by 31.9%-33.6%, and the production of EPS by 62%-65% depending upon the strains and the amount of PSV added. The expressions of genes regulating the production of EPS and the quorum-sensing-inducers (gtfA, gtfD, ftf, relA, vicR, brpA, and comDE) in all S. mutans strains were down-regulated by PSV, but gtfB was down-regulated only in S. mutans KCTC 5316. Therefore, the anti-biofilm-forming activity of PSV was accomplished through the inhibition of biofilm formation, adherence activity, and the production of quorum-sensing inducers and EPS by S. mutans.

Prevention of Mother-to-child Transmission of Streptococcus mutans (치아우식증 유발세균의 모자감염)

  • Song, Keun-Bae;Kim, Ji-Hye;Lee, Young-Eun
    • The Journal of the Korean dental association
    • /
    • v.48 no.6
    • /
    • pp.436-442
    • /
    • 2010
  • Objective: Transmission of S. mutans, a major dental caries pathogen, occurs mainly during the first 2.5 years of age. Children appear to acquire S. mutans mostly from their mothers, but few studies have investigated preventive effect of xylitol to S. mutans transmission from mother to child. The aim of this study was to perform a follow-up evaluation the preventive effect of xylitol chewing gum of the S. mutans of children's oral cavities, which included the characteristics of vertical transmission from mother to child. Methods: The mothers voluntarily participating in a women's oral health prevention program were divided into two groups (a control and a xylitol group). The subjects were 20 mother-child pairs, who were monitored for 30 months. Xylitol chewing gum group had consumed 2 gum pellets, 3 times a day for 24 months, and then they were followed until 30 months. At baseline, 24 and 30 months whole stimulated saliva samples were collected from the mothers. Children were also recruited from 6 months to 30 months after birth and were collected their dental plaque samples. After isolation and identification, the analysis of the colony count, transmission electron microscopy and real-time RT-PCR were performed to analyze the characteristics of S. mutans. Results: The S. mutans counts decreased steadily in the xylitol group at 24 months, but increased at 30 months. The similar results were showed at their children. While the glucan synthesis was decreased at xylitol group both mother and child. The expression of gtfB, gtfD and ftf were significantly reduced in the xylitol group both mother and child (p<0.05). Conclusions: These findings indicate that chewing xylitol gum over a long period may decrease the expression of the genes associated virulence and reduced the glucan synthesis of S. mutans, which can result the preventing the mother-to-child transmission of S. mutans.

The power of BanLyeo (伴侶, companion) music: better than medicine (https://youtu.be/GTfOIJ7bZbo)

  • Ko, Kyung Ja
    • CELLMED
    • /
    • v.11 no.1
    • /
    • pp.5.1-5.2
    • /
    • 2021
  • The aim of this article is to argue that BanLyeo music (companion music) is much better than medicine. A companion who shares thoughts or actions, or a metaphorical description of an object that is always close or carried. Isn't the music that we share in our daily lives a BanLyeo music (companion music)? Music stays with us forever as long as we choose. Therefore, it is music that can go with us until the end, so I think we should call it BanLyeo music (companion music). Music can be with us whenever and wherever we want, soothing sadness and pain and cheering us up. Here is a person who is living a second life happily because of BanLyeo music. Beyond the passive listening to music, direct and active music performance is a great power to save one person. As a more effective healing agent than medicine, BanLyeo music is a great power to stay together for the rest of your life and cheer you up. So, I think music is much better than medicine.

The study of the change of life with Kim's Ajaeng Sanjo Music Playing (ASMP) played by Hyung Min Kim (https://youtu.be/GTfOIJ7bZbo)

  • Ko, Kyung Ja
    • CELLMED
    • /
    • v.8 no.2
    • /
    • pp.9.1-9.3
    • /
    • 2018
  • The purpose of this article is to discuss that ajaeng sanjo music playing (ASMP) can change a person's life. Ajaeng is often called a Korean cello and is the largest and lowest-pitched instrument in the string instrument family in Korean music. From far away it has a deep, low sound. Its low sound adds to its comfort and peace. Listening to a low tone music can help you calm down and heart-easing. As soon as he listened ajaeng sanjo music he felt that low sound is mildly under his patronage. He felt much more interesting energy and vitality about our minds and bodies are in ajaeng sanjo music. He could immerse himself in playing ajaeng sanjo music (ASMP) for several years. The Korean music, tune is one of expression, meaning it is inseparable from the feeling. Many studies show that low tone music not only activates brain power, but soothes minds. Music always stood by him during difficult times. In a word, ASMP leads him to change of life and music is the language of emotion to him.

Construction of L-Threonine Overproducing Escherichia coli by Cloning of the Threonine Operon

  • Lee, Jin-Ho;Oh, Jong-Won;Noh, Kap-Soo;Lee, Hyune-Hwan;Lee, Jae-Heung
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.243-247
    • /
    • 1992
  • The thr operon of Escherichia coli TF427, an $\alpha$-amino-$\beta$-hydroxyvaleric acid (AHV)-resistant threonine overproducer, was cloned in a pBluescriptII $KS^+$ plasmid by complementation of E. coli mutants. All clones contained a common 8.8 kb HindIII-generated DNA fragment and complemented the thrA, thrB, and thrC mutants by showing that these clones contained the whole thr operon. This thr operon was subcloned in the plasmid vectors pBR322, pUC18, and pECCG117, an E. coli/Corynebacterium glutamicum shuttle vector, to form recombinant plasmids pBTF11, pUTF25 and pGTF18, respectively. The subcloned thr operon was shown to be present in a 6.0 kb insert. A transformant of E. coli TF125 with pBTF11 showed an 8~11 fold higher aspartokinase I activity, and 15~20 fold higher L-threonine production than TF125, an AHV-sensitive methionine auxotroph. Also, it was found that the aspartokinase I activity of E. coli TF125 harboring pBTF11 was not inhibited by threonine and its synthesis was not repressed by threonine plus isoleucine.

  • PDF

Effect of irradiation on the Streptococcus mutans (방사선조사가 Streptococcus mutans에 미치는 영향)

  • Ahn, Ki-Dong;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.37 no.1
    • /
    • pp.35-43
    • /
    • 2007
  • Purpose : To observe direct effect of irradiation on cariogenic Streptooccus mutans. Materials and Methods : S. mutans GS5 was exposed to irradiation with a single absorbed dose of 10, 20, 30, and 40Gy. Viability and changes in antibiotic sensitivity, morphology, transcription of virulence factors, and protein profile of bacterium after irradiation were examined by pour plate, disc diffusion method, transmission electron microscopy, RT-PCR, and SDS-PAGE, respectively. Results : After irradiation with 10 and 20Gy, viability of S. mutans was reduced. Further increase in irradiation dose, however, did not affect the viability of the remaining cells of S. mutans. Irradiated 5. mutans was found to have become sensitive to antibiotics. In particular, the bacterium irradiated with 40Gy increased its susceptibility to cefotaxime, penicillin, and tetracycline. Under the transmission electron microscope, number of morphologically abnormal cells was increased as the irradiation dose was increased. S. mutans irradiated with 10 Gy revealed a change in the cell wall and cell membrane. As irradiation dose was increased, a higher number of cells showed thickened cell wall and cell membrane and Iysis, and appearance of ghost cells was noticeable. In RT-PCR, no difference was detected in expression of gtfB and spap between cells with and without irradiation of 40Gy. In SDS-PAGE, proteins with higher molecular masses were gradually diminished as irradiation dose was increased. Conclusion : These results suggest that irradiation affects the cell Integrity of S. mutans, as observed by SDS-PAGE, and as manifested by the change in cell morphology, antibiotic sensitivity, and eventually viability of the bacterium.

  • PDF