DOI QR코드

DOI QR Code

Antibacterial and Antibiofilm Activities of Diospyros malabarica Stem Extract against Streptococcus mutans

Streptococcus mutans에 대한 인도감나무 줄기 추출물의 항균활성 및 생물막 형성 억제 효과

  • Kim, Hye Soo (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Lee, Sang Woo (International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Sydara, Kongmany (Institute of Traditional Medicine, Ministry of Health, Vientiane Capital) ;
  • Cho, Soo Jeong (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology)
  • Received : 2018.12.06
  • Accepted : 2019.01.09
  • Published : 2019.01.30

Abstract

The objective of this study was to evaluate the potential of Diospyros malabarica stem extract, a natural materials, in oral health material. With this aim in mind, thin layer chromatography (TLC), TLC-bioautography, high-performance liquid chromatography (HPLC), electrospray ionization-mass spectrometry (ESI-MS), scanning electron microscopy (SEM), and real-time qPCR were performed. The antibacterial activity of D. malabarica stem extract against Streptococcus mutans KCTC3065 was confirmed in an n-hexane fraction with low polarity. The molecular weight of the antibacterial compound was estimated to be 188 by ESI-MS analysis. The inhibitory effects of the extract on biofilm formation and gene expression related to biofilm formation of S. mutans were determined by SEM and real-time PCR analysis. The extract inhibited the formation of S. mutans biofilms at D. malabarica stem extract concentrations of 1 mg/ml, as shown by SEM. The real-time PCR analysis showed that the expression of the gtfC gene, which is associated with biofilm formation, was significantly decreased in a dose-dependent manner. Based on the above results, it can be concluded that D. malabarica stem extracts, a natural materials, can be used in oral health products to suppress the formation of biofilms by inhibiting tooth adhesion of S. mutans, a causative agent of dental caries.

본 연구에서는 천연물 유래 구강 건강소재로써 인도감나무 줄기 추출물의 이용 가능성을 평가하기 위해 TLC, TLC-bioautography, HPLC, ESI-MS 등을 이용하여 인도감나무 줄기 추출물로부터 S. mutans KCTC3065에 대해 항균활성이 있는 항균물질을 분리하고 주사전자현미경과 real-time PCR을 이용하여 추출물이 S. mutans의 생물막에 미치는 영향을 조사하였다. S. mutans에 대한 인도감나무 줄기 추출물의 항균활성은 극성이 낮은 n-hexane 분획물에서 확인되었고 TLC, TLC-bioautography, HPLC에 의해 분리된 항균물질의 분자량은 ESI-MS분석 결과 188로 추정되었다. 인도감나무 줄기 추출물(1 mg/ml) 처리에 따른 S. mutans의 바이오필름 바이오매스 변화는 주사전자현미경으로 관찰하였으며 추출물을 처리하지 않은 대조구는 추출물 처리구에 비해 세포가 군집을 이루고 모여 있었으며 세포 주변에서 바이오필름이 관찰되었지만 추출물을 처리한 처리구의 세포 주변에서는 바이오필름을 관찰할 수 없었다. Real-time PCR을 이용하여 바이오필름 생성 과정에서 치면 부착에 필수적인 GTFs의 발현 양상을 조사한 결과, 인도감나무 추출물이 0.2-1.0 mg/ml의 농도로 처리된 배양액에서 gtfB 유전자 발현은 추출물의 농도에 따라 큰 변화가 없었지만 gtfC 유전자 발현은 추출물의 농도가 높아질수록 감소하는 경향을 나타내었다. 이상의 결과를 종합하면 인도감나무 줄기 추출물은 바이오필름 형성 단계에서 치아우식증 원인균인 S. mutans의 초기 치면 부착을 저해함으로서 바이오필름 생성을 억제할 수 있는 천연물 유래 구강 건강소재로써 이용 가능성이 높을 것으로 판단된다.

Keywords

SMGHBM_2019_v29n1_90_f0001.png 이미지

Fig. 1. Isolation procedure of putative antibacterial compound from D. malabarica stems.

SMGHBM_2019_v29n1_90_f0002.png 이미지

Fig. 2. Antibacterial activity of partitioned fraction (1 mg/ disc) with solvents of D. malabarica stems against S. mutans KCTC3065. a: Methanol as a negative control, b: Methanol extracts from D. malabarica stems as a positive control, c: n-Hexane fraction, d: Chloroform fraction, e: Ethyl acetate fraction, f: n-Butanol fraction, g: Water soluble fraction.

SMGHBM_2019_v29n1_90_f0003.png 이미지

Fig. 3. TLC (A) and TLC-bioautography (B) of n-hexane fraction from Diospyros malabarica stems.

SMGHBM_2019_v29n1_90_f0004.png 이미지

Fig. 4. HPLC chromatogram of hexane fraction from D. malabarica stems (A) and antibacterial activity against S. mutans KCTC3065 of HPLC fraction (1 mg/ml) (B). a: Methanol as a negative control, b: Methanol extracts from D. malabarica stems as a positive control, c: HPLC fraction F1, d: HPLC fraction F2, e: HPLC mobile phase (chloroform ethyl acetate=4:1) a negative control.

SMGHBM_2019_v29n1_90_f0005.png 이미지

Fig. 5. Electrospray ionization–mass spectrometry (ESI-MS) spectrum of D. malabarica stems extract.

SMGHBM_2019_v29n1_90_f0006.png 이미지

Fig. 6. Scanning electron microscopy (SEM) micrographs of Streptococcus mutans KCTC3065 biofilms in the absence (A, B) and presence (C, D) of D. malabarica stems extract (1 mg/ml). Magnification is shown by the bar (1 um). Two different magnifications are shown for each surface; ×5,000 for the upper (A, C) and ×10,000 for the lower images (B, D).

SMGHBM_2019_v29n1_90_f0007.png 이미지

Fig. 7. Effects of Diospyros malabarica stems extract on the genes in relation to the biofilm formation of S. mutans KCTC 3065 by real-time PCR analysis. The genes in relation to the biofilm formation of S. mutans KCTC3065 in the absence and presence of extract of D. malabarica stems. Results are shown as the SD of five replicates. *p<0.05, as compared with control.

Table 1. Oligonucleotides used for real-time PCR in this study

SMGHBM_2019_v29n1_90_t0001.png 이미지

References

  1. Bergstorm, J. and Holmberg, B. 1973. The effect of chlorhexidine emulsion on plaque. An infra individual study of local application. Swed. Dent. J. 66, 461-465.
  2. Budtz-Jorgensen, E. and Loe, H. 1972. Chlorhexidine as a denture disinfectant in the treatment of denture stomatitis. Scand. J. Dent. Res. 80, 457-464.
  3. Choi, H. J., Kim, N. J. and Kim, D. H. 2000. Hypoglycemic effect of GE974 isolated from Gyrophora esculenta in normal and diabetic mice. Kor. J. Pharmacogn. 31, 268-272.
  4. Choma, I. M. and Grzelak, E. M. 2010. Bioautography detection in thin-layer chromatography. J. Chromatogr. A. 1218, 2684-2691. https://doi.org/10.1016/j.chroma.2010.12.069
  5. Costerton, J. W., Stewart, P. S. and Greenberg, E. P. 1999. Bacterial biofilms: A common cause of persistent infections. Science 60, 756-762.
  6. Davies, A. 1973. The mode of action of chlorhexidine. J. Periodont. Res. 8, 68-75. https://doi.org/10.1111/j.1600-0765.1973.tb02167.x
  7. Davidson, P. M. and Parish, M. E. 1989. Methods for testing the efficacy of food antimicrobials. Food Technol. 43, 148-152.
  8. Dewanjee, S., Gangopadhyay, M., Bhattacharya, N., Khanra, R. and Dua, T. K. 2015. Bioautography and its scope in the field of natural product chemistry. J. Pharm. A. 5, 75-84. https://doi.org/10.1016/j.jpha.2014.06.002
  9. Ebisu, S., Misaki, A., Kato, K. and Kotani, S. 1974. The structure of water-insoluble glucans of cariogenic Streptococcus mutans, formed in the absence and presence of dextranase. Carbohydr. Res. 38, 374-381. https://doi.org/10.1016/S0008-6215(00)82375-7
  10. Fujiwara, T., Hoshino, T., Ooshima, T. and Hamada, S. 2002. Differential and quantitative analyses of mRNA expression of glucosyltransferases from Streptococcus mutans MT8148. J. Dent. Res. 81, 109-113. https://doi.org/10.1177/0810109
  11. Hassan, S., Danishuddin, M., Adil, M., Singh, K., Verma, P. K. and Khan, A. U. 2012. Efficacy of E. officinalis on the cariogenic properties of Streptococcus mutans a novel and alternative approach to suppress quorum sensing mechanism. PLoS One 7, e40319. https://doi.org/10.1371/journal.pone.0040319
  12. Hennessey, T. S. 1973. Some antibacterial properties of chlorhexidine. J. Periodont. Res. 8, 61-67. https://doi.org/10.1111/j.1600-0765.1973.tb02166.x
  13. Huh, M. K. and Kim, H. J. 2014. Antimicrobial effects of sophorae radix extract against oral microorganism. J. Kor. Soc. Dent. Hyg. 14, 117-122. https://doi.org/10.13065/jksdh.2014.14.01.117
  14. Iniue, M., Koga, T., Sato, S. and Hamada, S. 1982. Synthesis of adherent insoluble glucan by the concerted action of the two glucosyltransferase components of Streptococcus mutans. FEBS Lett. 143, 101-104. https://doi.org/10.1016/0014-5793(82)80282-2
  15. Kolenbrander, P. E., Palmer, R. J., Periasamy, S. and Jakubovics, N. S. 2010. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 8, 471-480. https://doi.org/10.1038/nrmicro2381
  16. Kim, H. K., Park, H. W., Shin, I. S., Lee, J. H. and Seo, H. W. 2008. The antimicrobial effect of horseradish (Armoracia rusticana) root extracts against Streptococcus mutans isolated from human dental plaque. J. Kor. Acad. Pediatr. Dent. 35, 225-234.
  17. Kim, H. S., Kwon, H. S., Kim, C. H., Lee, S. W., Sydara, K. and Cho, S. J. 2018. Effects of methanol extracts from Diospyros malabarica stems on growth and biofilm formation of oral bacteria. J. Life Sci. 28, 110-115. https://doi.org/10.5352/JLS.2018.28.1.110
  18. Kumar, S., Shukla, Y. N., Lavania, U. C., Sharma, A. and Singh, A. K. 1997. Medicinal and aromatic plants: prospects for India. J. Med. Arom. Plant Sci. 19, 361-365.
  19. Kuramitsu, H. K., He, X., Lux, R., Anderson, M. H. and Shi, W. 2007. Interspecies interactions within oral microbial communities. Microbiol. Mol. Biol. Rev. 71, 653-670. https://doi.org/10.1128/MMBR.00024-07
  20. Lee, S. Y., Kim, J. G., Bail, B. J., Yang, Y. M., Lee, K. Y., Lee, Y. H. and Kim, M. A. 2009. Antimicrobial effect of essential oils on oral bacteria. J. Kor. Acad. Pediatr. Dent. 36, 1-11.
  21. Lim, S. H., Seo, J. S. and Yoon, Y. J. 2003. Effect of leafextract from Camellia sinensis and seed-extract from Casia tora on viability of mutans streptococci isolated from the interface between orthodontic brackets and tooth surfaces. Kor. J. Orthod 33, 381-389.
  22. Marsh, P. D. 2001. Dental plaque as a microbial biofilm. Caries Res. 38, 204-211. https://doi.org/10.1159/000077756
  23. Park, S. N., Lim, Y. K., Freire, M. O., Cho, E., Jin, D. and Kook, J. K. 2012. Antimicrobial effect of linalool and ${\alpha}$ -terpineol against periodontopathic and cariogenic bacteria. Anaerobe 18, 369-372. https://doi.org/10.1016/j.anaerobe.2012.04.001
  24. Paula, V., Modesto, A., Santos, K. R. and Gleiser, R. 2010. Antimicrobial effects of the combination of chlorhexidine and xylitol. Br. Dent. J. 209, 19-23. https://doi.org/10.1038/sj.bdj.2010.579
  25. Poureslami, H. 2012. The effects of plant extracts on dental plaque and caries. pp. 396-402. In: Contemporary Approach to Dental Caries, Lim, M.Y. (Ed.). Croatia, In Tech.
  26. Pranjal, S. and Debabrat, B. 2014. Phytochemical analysis and antioxidant activity of Gardenia jasminoides ellis and Diospyros malabarica kostel. Int. J. Pharm. Bio. Sci. 5, 199-204.
  27. Ramsewak, R. S., Nair, M. G., Stommel, M. and Selanders, L. 2003. In vitro antagonistic activity of monoterpenes and their mixtures against 'toe nail fungus' pathogens. Phytother. Res. 17, 376-379. https://doi.org/10.1002/ptr.1164
  28. Rode, M. S., Kalaskar, M. G., Gond, N. Y. and Surana, S. J. 2013. Evaluation of anti-diarrheal activity of Diospyros malabarica bark extract. Bangladesh J. Pharmacol. 8, 49-53.
  29. Rosan, B. and Lamont, R. J. 2000. Dental plaque formation. Microbes Infect. 2, 1599-1607. https://doi.org/10.1016/S1286-4579(00)01316-2
  30. Schaupp, H. and Wohnaut, H. 1973. Disturbance of taste from oral disinfectants. HNO. 26, 335-341.
  31. Shin, A. R., Ohk, S. H., Choi, C. H. and Hong, S. J. 2016. Identification and partial purification of antibacterial compounds against Streptococcus mutans from Galla Rhois. J. Kor. Acad. Oral. Health 40, 3-8. https://doi.org/10.11149/jkaoh.2016.40.1.3
  32. Takenaka, S., Oda, M., Domon, H., Ohsumi, T., Suzuki, Y., Ohshima, H., Yamamoto, H., Terao, Y. and Noiri, Y. 2016. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture. Biochem. Biophys. Res. Commun. 480, 173-179. https://doi.org/10.1016/j.bbrc.2016.10.021
  33. Wenham, D. G., Davies, R. M. and Cole, J. A. 1981. Insoluble glucan synthesis by mutansucrase as determinant of the cariogenicity of Streptococcus mutans. J. Gen. Microbiol. 127, 407-415.
  34. Whiley, R. A. and Beighton, D. 1998. Current classification of the oral streptococci. Oral Microbiol. Immunol. 13, 195-216. https://doi.org/10.1111/j.1399-302X.1998.tb00698.x
  35. Yu, J. H., Lee, D. M. and Lee, S. H. 2016. Destabilizing effect of glycyrrhetinic acid on pre-formed biofilms of Streptococcus mutans. J. Kor. Acad. Oral Health 40, 38-42. https://doi.org/10.11149/jkaoh.2016.40.1.38
  36. Zhiyan, H., Qian, W., Yuejian, H., Jingping, L., Yuntao, J. and Rui, M. 2012. Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxS mutant strain. Int. J. Antimicrob. Agents 40, 30-35. https://doi.org/10.1016/j.ijantimicag.2012.03.016
  37. Zijnge, V., Leeuwen, M. B., Degener, J. E., Abbas, F., Thurnheer, T., Gmur, R. and Harmsen, H. J. 2010. Oral biofilm architecture on natural teeth. PLoS One 5, e9321. https://doi.org/10.1371/journal.pone.0009321