• Title/Summary/Keyword: growth season

Search Result 1,333, Processing Time 0.027 seconds

Effects of Dietary Protein and Lipid Levels on Growth and Body Composition of Sub-adult Flounder Paralichthys olivaceus During the Summer Season

  • Kim, Kyoung-Duck;Kang, Yong-Jin;Lee, Jong-Yun;Kim, Kang-Woong;Choi, Se-Min
    • Journal of Aquaculture
    • /
    • v.21 no.4
    • /
    • pp.239-243
    • /
    • 2008
  • A $3{\times}2$ factorial experiment was conducted to investigate the proper dietary protein and lipid levels for the growth of sub-adult flounder Paralichthys olivaceus reared during the summer season. Six experimental diets were formulated to contain three levels of protein (45%, 50% and 55%) and two levels of lipid (9% and 14%). Duplicate groups of fish (initial body weight of 298 g) were hand-fed to apparent satiation during the summer season ($21.8{\pm}1.7^{\circ}C$) for 60 days. Survival of each group was over 83% and there was not significant difference among all groups. Weight gain of fish fed the 45% protein diet with 14% lipid was not significantly different from that of fish fed the 50% and 55% protein diets with 9% and 14% lipids, but weight gain of fish fed the 45% protein diet with 9% lipid was significantly lower than that of fish fed the 55% protein diets with 14% lipid. Feed efficiency tended to increase with increasing dietary lipid level at each protein levels, although no significant differences were observed at 50% and 55% protein levels. Protein efficiency ratio, daily feed intake, condition factor and hepatosomatic index were not significantly affected by dietary protein and lipid levels. Crude lipid content of the liver tended to increase with increasing dietary lipid level at the same protein levels, but the opposite appearance was found for moisture content. The contents of moisture, crude protein and crude lipid of the dorsal muscle were not significantly affected by dietary protein and lipid levels. Based on data obtained form this study, inclusion of dietary protein at level of 45% appears sufficient to support optimal growth, and an increase of dietary lipid level from 9% to 14% has beneficial effects on feed utilization of sub-adult flounder during the summer season.

H2O2 Pretreatment Modulates Growth and the Antioxidant Defense System of Drought-stressed Zoysiagrass and Kentucky Bluegrass

  • Bae, Eun-Ji;Han, Jeong-Ji;Choi, Su-Min;Lee, Kwang-Soo;Park, Yong-Bae;Lee, Geung-Joo
    • Horticultural Science & Technology
    • /
    • v.34 no.3
    • /
    • pp.383-395
    • /
    • 2016
  • This study investigated the effect of exogenous hydrogen peroxide ($H_2O_2$) on the antioxidant responses and growth of warm-season turfgrass (Zoysia japonica Steud.) and cool-season turfgrass (Poa pratensis L.) subjected to drought stress. Compared with control plants that were not pretreated with $H_2O_2$, plants pretreated with $H_2O_2$ had significantly greater fresh and dry weights of shoots and roots, and increased water content. $H_2O_2$ pretreatments before drought stress significantly decreased the concentrations of malondialdehyde and $H_2O_2$. DPPH radical scavenging and glutathione activities were significantly increased. The responsive activities of the antioxidant enzymes superoxide dismutase, ascorbate peroxidase, catalase, and peroxidase were also significantly enhanced. Our results suggest that exogenous $H_2O_2$ could improve the growth of warm-season and cool-season turfgrass under drought stress by increasing the activity of their antioxidant enzymes, while decreasing lipid peroxidation.

Evaluation of climate change on the rice productivity in South Korea using crop growth simulation model

  • Lee, Chung-Kuen;Kim, JunHwan;Shon, Jiyoung;Yang, Won-Ha
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2011.11a
    • /
    • pp.16-18
    • /
    • 2011
  • Evaluation of climate change on the rice productivity was conducted using crop growth simulation model, where Odae, Hwaseong, Ilpum were used as a representative cultivar of early, medium, and medium-late rice maturity type, respectively, and climate change scenario 'A1B' was applied to weather data for future climate change at 57sites. When cropping season was fixed, rice yield decreased by 4~35% as climate change which was caused by poor filled grain ratio with high temperature and low irradiation during grain-filling. When cropping season was changed, rice yield decreased by only 0~5% as climate change which was caused poor filled grain ratio with low irradiation during grain-filling period. However, this irradiation decline was less than when cropping season was fixed. Therefore, we need to develop rice cultivars resistant to low irradiation which can maintain high filled grain ratio under poor irradiation condition, and late maturity rice cultivars whose growing period is longer than the present medium-late maturity type.

  • PDF

Evaluation of Growth, Carcass, Immune Response and Stress Parameters in Naked Neck Chicken and Their Normal Siblings under Tropical Winter and Summer Temperatures

  • Rajkumar, U.;Reddy, M.R.;Rao, S.V. Rama;Radhika, K.;Shanmugam, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.4
    • /
    • pp.509-516
    • /
    • 2011
  • The performance of naked neck and normal chicken was evaluated with respect to growth, carcass, immune, biochemical and stress parameters under winter and summer seasons to assess the suitability of naked neck birds under high temperatures in the global scenario of climate change. The growth performance was significantly ($p{\leq}0.05$) higher in naked neck chicken in the summer season. The dressing percentage was significantly ($p{\leq}0.05$) higher in naked neck birds in both winter and summer season because of reduced plumage. The thigh, giblet and feather proportion significantly ($p{\leq}0.05$) varied between naked neck and normal chickens in summer season. The humeral immune response to sheep red blood cells (SRBC), Newcastle disease vaccine (NDV) and cutaneous basophil hypersensitivity (CBH) did not show any significant differences among the chicken groups. The protein and cholesterol concentration observed was within the normal ranges. The total cholesterol levels in plasma were significantly ($p{\leq}0.05$) lower in naked neck birds in both the seasons. H:L ratio was significantly ($p{\leq}0.05$) lower in summer season indicating less stress in naked neck chicken. Basophil and eosinophil concentration was significantly ($p{\leq}0.05$) higher in normal chicken in summer. The lipid peroxidation was higher in full feathered birds under summer stress. The enzyme glutathione reductase (GR) levels were significantly higher during the summer and varied significantly ($p{\leq}0.05$) between the normal and naked neck chicken in both seasons. The results indicated that the naked neck birds performed significantly better at high ambient temperatures with respect to growth, carcass and biochemical parameters. It was concluded that the ability of the naked neck chicken to adapt to high temperatures foresees a viable option for the biological mitigation of climate change.

Inactivation of Indoor Airborne Fungi Using Cold Atmospheric Pressure Plasma (저온 대기압 플라즈마의 실내공기 중 곰팡이 생장억제 효과)

  • Paik, Namwon;Heo, Sungmin;Lee, Ilyoung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.351-357
    • /
    • 2019
  • Objectives: The objectives of this study were to investigate fungal contamination in a 31-year old university building in Seoul, Korea, and to study the inactivation of fungi using cold atmospheric pressure plasma(CAP). Methods: To investigate the fungal contamination in a university building, air samples were collected from five locations in the building, including two study rooms, a storage room, a laboratory, and a basement. The sampling was performed in a dry season(February to April) and in a wet season(July). To study the inactivation efficacy of fungi by CAP, airborne fungal concentrations were measured before and after the operation of the CAP generator. Results: Humidity was an important factor affecting fungal growth. The airborne fungal concentrations determined in the wet season(July) were significantly higher than those determined in the dry season(February to April). In the basement, the values determined in the dry and wet season were 319 and $3,403CFU/m^3$, respectively. The inactivation efficiency of fungi by CAP was 83-90% over five to nine days of operation. Conclusions: The university building was highly contaminated by airborne fungi, especially in summer. It is concluded that humidity is an important factor affecting fungal growth and CAP is a highly useful technique for inactivation of indoor airborne fungi.

Changes of Tree Growth and Fruit Quality of "Yumi" Peach under Long-Term Soil Water Deficit

  • Yun, Seok Kyu;Kim, Sung Jong;Nam, Eun Young;Kwon, Jung Hyun;Chung, Kyeong Ho;Choi, In Myung;Kim, Ghiseok;Shin, Hyunsuk
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.276-282
    • /
    • 2017
  • Purpose: This paper presents the effects of soil drought stress during the growing season and pre-harvest period on tree growth and fruit quality of "Yumi" peach, an early season cultivar. Methods: Soil drought stresses were treated with four levels of -30, -50, -60, and -70 kPa during long term (LT) and short term (ST). For LT treatments, soil water was controlled for nine weeks from May 1 to July 5, which was assumed as the full growing season. For ST treatments, soil water was controlled for four weeks from June 10 to July 5, which was assumed as the pre-harvest season. Tree growth and leaf photosynthesis were measured, and fruit characteristics such as fruit weight and diameter, soluble solid and tannin contents, and harvest date were investigated. Results: Soil water deficit treatments caused a significant reduction in tree growth, leaf photosynthesis, and fruit enlargement. LT water stress over -60 kPa during the full growing season caused significant reduction in tree growth, including shoot length, trunk girth, leaf photosynthesis, and fruit enlargement. ST water stress over -60 kPa during the pre-harvest period also induced significant reduction in leaf photosynthesis and fruit enlargement, while tree growth was not reduced. In terms of fruit quality, water stress over -50 kPa significantly reduced fruit weight, increased soluble solid and tannin contents, and delayed harvest time in both LT and ST treatments. Conclusions: As a result, it is assumed that LT water stress over -60 kPa can reduce both tree growth and fruit enlargement, whereas ST water stress over -50 kPa can reduce fruit enlargement without reducing tree growth. From an agricultural perspective, moderate water deficit like -50 kPa treatments could have positive effects, such increased fruit soluble solid contents along with minimal reduction in fruit size.

Relationships between Cell Bio-volume and Growth Rate of Dominant Red Tide Organisms in the Coastal Water (연안내만해역에서 우점하는 주요적조생물의 성장과 세포체적의 관계)

  • Baek, Seung-Ho;Joo, Hae-Mi
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • To understand growth characteristics of eight dominant red tide species ($Prorocentrum$ $minimum$, $Heterocapsa$ $triquetra$, $Scrippsiella$ $trochoidea$, $Akashiwo$ $sanguinea$, $Chattonella$ $marina$, $Heterosigma$ $akashiwo$, $Amphidinium$ $carterae$ and $Rhodomonas$ $salina$) in the Korean coastal water, the growth rates were examined in relation with the impacts of water temperature and bio-volume. Of these, $P.$ $minimum$, $C.$ $marina$, $H.$ $akashiwo$, $A.$ $carterae$ and $R.$ $salina$ were eurythermal species with relatively high growth rates in a borad ranges (15 to $25^{\circ}C$) of water temperature. On the other hand, the growth rate of $H.$ $triquetra$, $S.$ $trochoidea$ and $A.$ $sanguinea$ were high in relatively mid temperature (optimum: $25^{\circ}C$) condition. In particular, $H.$ $triquetra$ was well adapted in low temperature of 5 to $15^{\circ}C$, implying that the species can survive and grows even at very low temperature. Based on results of our experiment, the growth characterestics of five eurythermal species and three mid temperature species may have dominated in Korean coastal water during summer season and fall season, respectively. Contrastively, the growth characteristics of $H.$ $triquetra$ make a consistently dominant during the cold winter season. In addition, the growth rates of large bio-volume species were lower than those of small bio-volume species, indicates that growth of single cells of several flagellates might be depended on the cells sizes.

Growth Characteristic of Warm-season Turfgrass in Saemangeum Reclaimed Land (새만금간척지에서 난지형 잔디의 생육 특성)

  • Bae, Eun-Ji;Han, Jeong-Ji;Lee, Kwang-Soo;Park, Yong-Bae;Choi, Su-Min
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.13-23
    • /
    • 2016
  • This study was conducted to investigate the growth characteristics of warm-season turfgrasses and to find out suitable turfgrass species on Saemangeum reclaimed land. Twenty native zoysiagrass(Zoysia sinica, Z. matrella, Z. japonica, Medium-leaf type zoysiagrass(hybrid zoysiagrass)) and bermudagrass(Cynodon dactylon) collected from Korea were used in this study. Total stolon length and the number of stolon per square meter, relative growth rate of shoot and stolon, and coverage rate were analyzed for 2 year. C. dactylon showed not only the most growth response with high relative growth rate of shoot and stolon, which were 19.9% and 66.3%, but also resulted in higher level of turf visual quality compared to others. Whereas Z. japonica showed the least growth response with low relative growth rate of shoot and stolon, which were 2.4% and 0.7%. Although all warm-season turfgrasses took root and grew up well, there were different growth rates between the interspecies. Z. sinica 'Z2034', Z. matrella 'Z4091', Z. japonica 'Z1064', Medium-leaf type zoysiagrass 'ZN6019' and C. dactylon 'BN7014' were the greatest growth rate of shoot and stolon. These results will be useful for selecting salt tolerant breeding lines and also used to develop a turfgrass cultivar with strong salinity tolerance through continuous monitoring.

Influence of Temperature and Relative Humidity in Infection of Nosema bombycis (Microsporidia: Nosematidae) and Cross-infection of N. mylitta on Growth and Development of Mulberry Silkworm, Bombyx mori

  • Chakrabarti, Satadal;Manna, Buddhadeb
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.17 no.2
    • /
    • pp.173-180
    • /
    • 2008
  • The influence of temperature and relative humidity in infection and cross-infection of Nosema bombycis and N. mylitta respectively in mulberry silkworm, Bombyx mori L. on larval mortality, multiplication of pathogens, larval weight and growth rate in three different seasons were studied. Seasons were selected in such condition, when very less fluctuations between minimum and maximum temperature and minimum and maximum relative humidity ($25{\sim}28^{\circ}C$ and $65{\sim}72%$ R.H) was observed i.e., season-1. Fluctuations between minimum and maximum temperature were less ($28.05{\sim}34.50^{\circ}C$) but R.H % was more ($55{\sim}81%$) in season-2. Fluctuations between minimum and maximum temperature and R.H % were more ($20.00{\sim}40.5^{\circ}C$ and $64.00{\sim}90.00%$) in season-3. Growth rate of microsporidian-infected silkworm is directly related to the prevailing temperature and relative humidity in silkworm. Silkworm can tolerate slight variation of temperature but slight variation of relative humidity disfavours the development of silkworm and favours the multiplication of pathogens.

Genetic Variation in Growth and Body Dimensions of Jersey and Limousin Cross Cattle. 2. Post-Weaning Dry and Wet Season Performance

  • Afolayan, R.A.;Pitchford, W.S.;Weatherly, A.W.;Bottema, C.D.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1378-1385
    • /
    • 2002
  • The importance of direct genetic, maternal, heterosis and epistatic effects were examined on post-weaning weight, height, length, girth, fat depth and muscle (ratio of stifle to hip width) with dry and wet season gains in these traits. The breeds used were two pure breeds (Jersey and Limousin), the Limousin${\times}$Jersey $F_1$, and two backcrosses ($F_1{\times}$Jersey dams and $F_1{\times}$Limousin dams). Direct genetic effects were large (p<0.001) for all traits except for length. Jersey maternal effects were large for weight, girth, fat depth and muscle in the post-weaning wet season gains which is an evidence of the impact of Jersey dam on progeny beyond weaning. There were large heterosis effects on fat depth and muscle relative to other traits. Epistatic effects were observed for post-weaning performance in weight, girth, fat depth and muscle. There are indications that there were different genetic effects for post-weaning compared to preweaning growth traits. Thus, it could be hypothesized from this study that different quantitative trait loci (QTL) affect early and late growth in Jersey and Limousin cross cattle breeds. The follow up work will examine the different chromosomal gene effects on pre- and post-weaning growth.