Relationships between Cell Bio-volume and Growth Rate of Dominant Red Tide Organisms in the Coastal Water

연안내만해역에서 우점하는 주요적조생물의 성장과 세포체적의 관계

  • Baek, Seung-Ho (South Sea Environment Research Department, Korea Ocean Research and Development Institute) ;
  • Joo, Hae-Mi (South Sea Environment Research Department, Korea Ocean Research and Development Institute)
  • 백승호 (한국해양연구원 남해특성연구부) ;
  • 주혜미 (한국해양연구원 남해특성연구부)
  • Received : 2011.12.13
  • Accepted : 2012.02.10
  • Published : 2012.03.01

Abstract

To understand growth characteristics of eight dominant red tide species ($Prorocentrum$ $minimum$, $Heterocapsa$ $triquetra$, $Scrippsiella$ $trochoidea$, $Akashiwo$ $sanguinea$, $Chattonella$ $marina$, $Heterosigma$ $akashiwo$, $Amphidinium$ $carterae$ and $Rhodomonas$ $salina$) in the Korean coastal water, the growth rates were examined in relation with the impacts of water temperature and bio-volume. Of these, $P.$ $minimum$, $C.$ $marina$, $H.$ $akashiwo$, $A.$ $carterae$ and $R.$ $salina$ were eurythermal species with relatively high growth rates in a borad ranges (15 to $25^{\circ}C$) of water temperature. On the other hand, the growth rate of $H.$ $triquetra$, $S.$ $trochoidea$ and $A.$ $sanguinea$ were high in relatively mid temperature (optimum: $25^{\circ}C$) condition. In particular, $H.$ $triquetra$ was well adapted in low temperature of 5 to $15^{\circ}C$, implying that the species can survive and grows even at very low temperature. Based on results of our experiment, the growth characterestics of five eurythermal species and three mid temperature species may have dominated in Korean coastal water during summer season and fall season, respectively. Contrastively, the growth characteristics of $H.$ $triquetra$ make a consistently dominant during the cold winter season. In addition, the growth rates of large bio-volume species were lower than those of small bio-volume species, indicates that growth of single cells of several flagellates might be depended on the cells sizes.

Keywords

References

  1. 국립수산과학원. 2005. 2005년도 한국연안의 적조발생 상황.149pp.
  2. 국립수산과학원 2007. 2007년도 한국연안의 적조발생 상황.97pp.
  3. 국립수산과학원 2008. 2008년도 한국연안의 적조발생 상황.127pp.
  4. 김학균. 2005. 해양적조. 다솜출판사. 467pp
  5. 노일현, 윤양호, 김대일, 오석진, 김종덕. 2010. 한국 남해에서분리한 유해 침편모조류 Chattonella ovata Yvatea et Chihara의수온, 염분 및 광량에 대한 성장특성. 한국해양학회지 바다15:140-147.
  6. 노일현, 윤양호, 김대일, 오석진. 2006. 가막만에서 분리한 유해성 침편모조류 Chattonella marina (Subrahmanyn) Haraet Chihara (Raphidophyceae)의 성장에 미치는 수온, 염분및 빛의 영향. 한국수산과학회지. 39:487-494.
  7. 심재형. 1994. 한국동식물도감 제34권 식물편(해양식물플랑크톤). 교육부.
  8. 양한섭, 김창훈, 강주찬, 김무상. 1999. 적조의 과학. 경상대학교 출판부. 68-85pp.
  9. 오석진, 김창훈, 권형규, 양한섭. 2010. 2008년 한국 남해안에서 분리한 유해 와편모조류 Cochlodinium polykrikoidesMargelef의 성장에 미치는 수온, 염분 그리고 광조건의영향. 한국수산과학회지. 43:715-722.
  10. 유영두, 정해진, 심재형, 박재연, 이경재, 이원호, 권효근, 배세진, 박종규. 2002. 전북 새만금 남쪽 해역의 유해성 적조발생연구 1. 1999년도 여름-가을 식물플랑크톤의 시공간적 변화. 한국해양학회지 바다7:129-139.
  11. 이창규, 김형철, 이삼근, 정창수, 김학균, 임월애. 2001. 남해안연안에서 적조생물, Cochlodinium polykrikoides, Gyrodinium impudicum, Gymnodinium catenatum의 출현상황과 온도, 염분, 조도 및 영양염류에 따른 성장특성. J. Korean Fish. Soc. 34:536-544.
  12. 이창규, 이옥희, 이삼근. 2005. 한국연안에서 분리한 적조형성 미세조류 10종의 성장에 미치는 온도, 염분, 광도의영향. 한국해양학회지 바다10:79-91.
  13. 임월애, 김학균, 이원재, 이삼석. 1993. 적조와편모조 Scrippsiella trochoidea 군증식에 미치는 환경요인과 지방산 조성. Bull. Korean. Fish. Soc. 26:198-203.
  14. Adachi R. 1972. A toxonomical study of the red tide organisms. J. Fac. Fish. Pref. Uni. Mie-Tsu. 9:9-145.
  15. Baek SH, JS Ki, T Katano, K You, BS Park, HH Shin, KS Shin, YO Kim and MS Han. 2011. Dense winter bloom of the dinoflagellate Heterocapsa triquetra below the thick surface ice of brackish Lake Shihwa, Korea. Phycological Res. 59: 273-285. https://doi.org/10.1111/j.1440-1835.2011.00626.x
  16. Barraza-Guardado R, R Cortes-Altamirano and A Siérra-Beltrán. 2004. Marine die-offs from Chattonella marina and Chattonella ovata in Kun Kaak Bay, Sonora in the Gulf of California. Harmful Algae News 25:7-8.
  17. Bockstahler KR and DW Coats. 1993. Grazing of the mixotrophic dinoflagellate Gymnodinium sanguineum on ciliate population of Chesapeake Bay. Mar. Biol. 116:477-487. https://doi.org/10.1007/BF00350065
  18. Botes L, GC Pitcher and PA Cook. 2000. The potential risk of harmful algae to abalone farming the south coast of South Africa. J. Shellfish Res.19:502.
  19. Fan C, PM Glibert and J Burkholder. 2003. Characterization of the affinity for nitrogen, uptake kinetics, and environmental relationships for Prorocentrum minimum in natural blooms and laboratory cultures. Harmful Algae 2:283-299. https://doi.org/10.1016/S1568-9883(03)00047-7
  20. Grzebyk D and B Berland. 1996. Influences of temperature, salinity and irradiance on growth of Prorocentrum minimum (Dinophyceae) from the Mediteranean Sea. J. Plankton Res. 18:1827-1849.
  21. Hammer A, R Schumann and H Schubert. 2002. Light and temperature acclimation of Rhodomonas salina (Cryptophyceae): photosynthetic performance. Aqual. Microb. Ecol. 29:287-296. https://doi.org/10.3354/ame029287
  22. Heil CA, PM Glibert and C Fan. 2005. Prorocentrum minimum (Pavillard) Schiller: A review of a harmful algal bloom species of growing worldwide importance. Harmful Algae 4: 449-470. https://doi.org/10.1016/j.hal.2004.08.003
  23. Hosaka M. 1992. Growth characteristics of a strain of Heterosigma akashiwo HADA isolated from Tokyo Bay, Japan. Bull Plankton Soc. Jpn. 39:49-58.
  24. Imai I and K Itoh. 1987. Annual life cycle of Chattonella spp., causative flagellates of noxious red tides in the Inland Sea of Japan. Mar. Biol. 94:287-292. https://doi.org/10.1007/BF00392942
  25. Imai I, M Yamaguchi and M Watanabe. 1998. Ecophysiology, life cycle, and bloom dynamics of Chattonella in the Seto Inland Sea, Japan. pp. 95-112. In Physiological Ecology of Hamful Algal blooms (Anderson, D.M., Cembella and G.M. Hallegraeff eds.). Springer-Verlag, Berlin.
  26. Kim YO and MS Han. 2000. Seasonal relationships between cyst germination and vegetative population of Scrippsiella trochoidea (Dinophyceae). Mar. Ecol. Prog. Ser. 204:111-118. https://doi.org/10.3354/meps204111
  27. Klut ME, NJ Antia and T Blsalputra. 1984. Some properties of a fluoride-resistant mutant of the marine dinoflagellate Amphidinium carterae. Phycologia 23:301-310. https://doi.org/10.2216/i0031-8884-23-3-301.1
  28. Licea S, EM Zamudio, R Luna and J Soto. 2004. Free-living dinoflagellates in the southern Gulf of Mexico: Report of data (1979-2002). Phycological Res. 52:419-428. https://doi.org/10.1111/j.1440-1835.2004.tb00351.x
  29. Matsubara T, S Nagasoe, Y Yamasaki, T Shikata, Y Shimasaki, Y Oshima and T Honjo. 2007. Effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea. J. Exp. Mar. Biol. Ecol. 342:226-230. https://doi.org/10.1016/j.jembe.2006.09.013
  30. Qin XM, JZ Zhou and PY Qian. 1997. Effects of Fe and Mn on the growth of a red tide dinoflagellate Scrippsiella trochoidea (Stein) Loeblich III. Chinese J. Oceanol. Limnol. 15: 173-180. https://doi.org/10.1007/BF02850689
  31. Rivkin RB. 1989. Influence of irradiance and spectral quality on the carbon metabolism of phytoplankton. I. Photosynthesis, chemical composition and growth. Mar. Ecol. Prog. Ser. 55:291-304. https://doi.org/10.3354/meps055291
  32. Robichaux RJ, Q Dortch and JH Wrenn. 1998. Occurrence of Gymnodinium sanguineum in Louisiana and Texas coastal waters, 1989-1994. NOAA Technical Report NMFS. 143: 19-26.
  33. Sun J and D Liu. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25:1331-1346. https://doi.org/10.1093/plankt/fbg096
  34. Tango PJ, R Magnien, W Butler, C Luckett, M Luckenbach, R Lacouture and C Poukish. 2005. Impacts and potential effects due to Prorocentrum minimum blooms in Chesapeake Bay. Harmful Algae 4:525-531. https://doi.org/10.1016/j.hal.2004.08.014
  35. Vrieling EG, RPT Koeman, K Nagasaki, Y Ishida, L Peperzak, WWC Gieskes and M Veenhuis. 1995. Chattonella and Fibrocapsa (Raphidophyceae): First observation of potentially harmful red tide organisms in Dutch coastal waters. Netherlands J. Sea Res. 33:183-191. https://doi.org/10.1016/0077-7579(95)90005-5
  36. Wall D, RRL Guillard, B Dale, E Swift and N Watabe. 1970. Calcitic resting cysts in Peridinium trochoideum (Stein) Lemmerann, an autitrophic marine dinoflagellate. Phycologia 9:151-156.
  37. Watanabe MM and Y Nakamura. 1984. Growth characteristics of a red tide flagellate, Heterosigma akashiwo HADA. I. The effect of temperature, salinity, light intensity and pH on growth. Res. Rep. Natl. Inst. Environ. Stud. Jpn. 63:51-58.
  38. Wu Y, C Zhou, Y Zhang, X Pu and W Li. 2000. Evolution and causes of formation of Gymnodinium sanguineum bloom in Yantai Sishili Bay. Oceanol. Limnol. Sin. Haiyang. Yu Huzhao. 32:159-167.
  39. Yan T, M Zhou and P Qian. 2002. Growth of fish-killing red tide species raphidophyte Heterosigma akashiwo. Oceanol. Limnol. Sin. Haiyang. Yu Huzhao. 33:209-214.
  40. Zhang Y, FX Fu, E Whereat, KJ Coyne and DA Hutchins. 2006. Bottom-up controls on a mixed-species HAB assemblage: A comparison of sympatric Chattonella subsalsa and Heterosigma akashiwo (Raphidophyceae) isolates from the Delaware Inland Bays, U.S.A. Harmful Algae 5:310-320. https://doi.org/10.1016/j.hal.2005.09.001