• Title/Summary/Keyword: growth of root

Search Result 3,899, Processing Time 0.034 seconds

Root metabolic cost analysis for root plasticity expression under mild drought stress

  • Kano-Nakata, Mana;Mitsuya, Shiro;Inukai, Yoshiaki;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.328-328
    • /
    • 2017
  • Drought is a major limiting factor that reduces rice production and occurs often especially under recent climate change. Plants have the ability to alter their developmental morphology in response to changing environment, which is known as phenotypic plasticity. In our previous studies, we found that one chromosome segment substitution line (CSSL50 derived from Nipponbare and Kasalath crosses) showed no differences in shoot and root growth as compared with the recurrent genotype, Nipponbare under non-stress condition but showed greater growth responses compared with Nipponbare under mild drought stress condition. We hypothesized that reducing root respiration as metabolic cost, which may be largely a consequence of aerenchyma formation would be one of the key mechanisms for root plasticity expression. This study aimed to evaluate the root respiration and aerenchyma formation under various soil moisture conditions among genotypes with different root plasticity. CSSL50 together with Nipponbare and Kasalath were grown under waterlogged conditions (Control) and mild drought stress conditions (20% of soil moisture content) in a plastic pot ($11cm{\times}14cm$, ${\varphi}{\times}H$) and PVC tube ($3cm{\times}30cm$, ${\varphi}{\times}H$). Root respiration rate was measured with infrared gas analyzer (IRGA, GMP343, Vaisala, Finland) with a closed static chamber system. There was no significant difference between genotypes in control for shoot and root growth as well as root respiration rate. In contrast, all the genotypes increased their root respiration rates in response to mild drought stress. However, CSSL50 showed lower root respiration rate than Nipponbare, which was associated by higher root aerenchyma formation that was estimated based on internal gas space (porosity) under mild drought stress conditions. Furthermore, there were significant negative correlations between root length and root respiration rate. These results imply that reducing the metabolic cost (= root respiration rate) is a key mechanism for root plasticity expression, which CSSL50 showed under mild drought.

  • PDF

Production of Saponin by Hairy Root Cultures of Ginseng (Panax ginseng C.A. Meyer) Transformed with Agrobacterium rhizogenes (Agrobacterium rhizogenes에 의하여 형질전환된 인삼(Panax ginseng C.A. Meyer)의 모상근 배양에 의한 Saponin 생산)

  • Hwang, Baik;Ko, Kyeong-Min;Hwang, Kyeong-Hwa;Hwang, Sung-Jin;Kang, Young-Hee
    • Journal of Plant Biology
    • /
    • v.34 no.4
    • /
    • pp.289-296
    • /
    • 1991
  • Cultures of hairy root induced from ginseng(Panax C.A. Meyer) transformed with Agrobacterium rhizogenes (strain A4, ATCC 15834) were established and morphologically two different hairy root strains (HB1, HB2) were obtained. To determine the optimum growth rate, the hairy root (HB2) was cultured in various liquid medium supplemented with or without plant growth hormone. The growth rate of hairy root cultured on MS medium was 1.3-3.1 times higher than those cultured on other media, and the optimum sucrose concentration and pH were 3-6%, 5.5-6.5, respectively. Also, the growth rate of hairy root was increased when 0.02 M ammonium nitrate, 1.2 mM potassium phosphate (monobasic) and 0.5 mg/l IBA were supplied to liquid medium. The saponin patterns and contents of hairy root (HB2) were determined by TLC and HPLC. The crude saponin contents were 4.67% and the total saponin contents were 1.0%, on dry weight basis.

  • PDF

Inhibition of Adventitious Root Growth in Boron-Deficient or Aluminum-Stressed Sunflower Cuttings

  • Hong, Jung-Hee;Go, Eun-Jung;Kim, Tae-Yun
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1189-1196
    • /
    • 2003
  • The effect of boron and aluminum on the development of adventitious roots was studied in sunflower cuttings. Three-day-old seedlings were de-rooted and grown in nutrient solutions with or without boron and supplemented with different concentrations (from 50 to 700 ${\mu}$M) of aluminum. The number and length of the adventitious roots and proline content in adventitious roots in response to insufficient boron and aluminum stress were determined periodically. The micronutrient boron caused the development of numerous roots in the lower parts of the hypocotyl. A dose-response of boron-induced rooting yielded an optimum concentration of 0.1 mM boron. In the absence of boron, in the majority of the adventitious roots, a significant inhibition was observed with or without aluminum, indicating that the most apparent symptom of boron deficiency is the cessation of root growth. Increasing concentrations of aluminum caused progressive inhibition of growth and rooting of the hypocotyls, and a parallel increase in proline levels of adventitious roots. Supplemental boron ameliorated the inhibitory effect of aluminum, suggesting that aluminum could inhibit root growth by inducing boron deficiency. Ascorbate added to medium in the absence of boron improved root growth and induced a significant decrease in proline levels. These findings suggest that adventitious root growth inhibition resulting from either boron deficiency or aluminum toxicity may be a result of impaired ascorbate metabolism.

Effects of Supplementing Gamba Grass (Andropogon gayanus) with Cassava (Manihot esculenta Crantz) Hay and Cassava Root Chips on Feed Intake, Digestibility and Growth in Goats

  • Phengvichith, Vanthong;Ledin, Inger
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.725-732
    • /
    • 2007
  • The effects of supplementing Gamba grass (Andropogon gayanus) with varying levels of hay from cassava (Manihot esculenta Crantz) and dried cassava root chip on growth and diet digestibility were studied using local male goats with an average initial body weight of 14.0 kg. Thirty-two animals were allocated to a completely randomized $2{\times}2$ factorial design with eight animals per treatment. The factors were two levels of cassava hay (25% and 35% of an expected dry matter (DM) intake of 3% of body weight) and cassava root chips (0 or 1% of body weight) on an individual basis with grass offered ad libitum. Another four animals were assigned to a $4{\times}4$ Latin square design to study digestibility, and were given the same four diets as in the growth experiment. Total DM intake was significantly higher in the group fed diets with cassava hay and root while the DM intake of Gamba grass was not significantly different between treatments. The supplementation with cassava hay and root increased the apparent digestibility of DM, organic matter and N and resulted in a higher N-retention. The apparent digestibility of neutral detergent fibre and acid detergent fiber was not affected significantly. The average daily gain of animals fed diets supplemented with both cassava hay and root was significantly higher than for the animals supplemented with cassava hay alone. The highest daily gain recorded was 70 g/day. In conclusion, supplementing a basal diet of Gamba grass with cassava hay and root chips improved DM intake, digestibility, N-retention and weight gain. In order to minimize the waste of cassava hay, the inclusion level of cassava hay can be recommended to be 25% of expected DM intake, which would give acceptable intake and growth performance when cassava root is included in the diet.

The Root Growth Curve of Salix gracilistyla Miq. Depending on The Cutting Size (갯버들 삽수의 규격에 따른 연간 근계 생장량 변화)

  • 박명안;이춘석;김태균
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.5
    • /
    • pp.11-19
    • /
    • 2003
  • The main purpose of this study was to examine the application of the root system as a shore protection material through the measurement of the 개ot growth curve of Salix gracilisyla Miq. depending on the cutting size. As materials and methodology, nine group of cuttings were classified by the length(l0cm, 20cm, 40cm) and the diameter(0.72cmm$\pm$0,02, 0.58cm$\pm$0.02, 0.35cm$\pm$0.02), Each group was stuck to a flooding bed of sandy loam(Sand 60,36%, Silt 28%, Clay 11.64%) on 27th March 2001, After 65 growing days, the weight and length of the newly developed roots, shoots, and leaves were measured and analysed, This was repeated at 99, 129, 159, and 190 growing days. The major findings were as follows. The primary determinant of the root growth rate was on the weight of cutting, The secondary determinant was on the number of growing days. In addition, the dominant dimension of the cutting was the diameter rather than the length, The thicker cutting caused more rapid and stable growth however the longer cutting made the growth of the root slower and more unstable.

Effects of Auxin-induced Ethylene on Growth and Development of Adventitious Roots of Panax ginseng C.A. Meyer (IBA와 NAA 처리에 의해 생성된 Ethylene이 인삼(Panax ginseng C.A. Meyer) 부정근의 생장과 발달에 미치는 영향)

  • Kim, Yun-Soo;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.173-177
    • /
    • 2003
  • The effect of IBA and NAA on adventitious root cultures of Panax ginseng C.A. Mater were investigated. Results indicated differences in growth and development of the roots according to 5mg/L IBA and 2mg/L NAA. IBA resulted in a normal root development and a higher growth compared to NAA. The roots formed on NAA-containing media were shorter and thicker than those in IBA, showing a hypertrophy of the root tip. NAA induced more than 1.6 times higher ethylene production compared to IBA, which caused inhibition of the root growth. Under the ventilation, in the other hand, on difference was observed in ethylene concentration and the root growth between IBA and NAA treatments. Under ventilation ethylene production was not detected until 10 days of culture, while detected from the initial stage under on ventilation. The results suggested the importance of ventilation during the culture for the growth and development of ginseng adventitious roots.

Relationships Between Soil-Borne Virus Infection and Root Growth Damage in Korean Hulless Barley Cultivars

  • Park, Jong-Chul;Jonson, Gilda;Noh, Tae-Hwan;Park, Chul-Soo;Kang, Chon-Sik;Kim, Mi-Jung;Park, Ki-Hoon;Kim, Hyung-Moo
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.231-235
    • /
    • 2009
  • Viral infections and root growth were examined to elucidate the relationship between viral resistance and root growth in 26 Korean hulless barley cultivars. Viral resistance was estimated in experimental filed of Honam agricultural research institute for 3 years. Length and number of seminal and adventitious roots were examined for evaluation of root growth in both field and green-house conditions 30 days after seeding. Dominant viral infection occurred in Korean hulless barley by Barley yellow mosaic virus (BaYMV) in fields; however, susceptible cultivars were infected by either BaYMV, Barley mild mosaic virus (BaMMV) or both. Only four cultivars, including Donghanchalssalbori, Kwangwhalssalbori, Namhossalbori and Naehanssalbori, presented stable resistance to viral infections. Susceptible cultivars to viral infection in fields showed shorter seminal root length and fewer adventitious root number than resistant cultivars. Resistant cultivars showed better root growth and significant difference in adventitious root length in green house conditions. Increase in the number of seminal roots in resistant cultivars was derived from decreased damage of roots by the viral infection compared to the susceptible cultivars.

Comparative Evaluation of Modified Bioreactors for Enhancement of Growth and Secondary Metabolite Biosynthesis Using Panax ginseng Hairy Roots

  • Jeong, Gwi-Taek;Park, Don-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.528-534
    • /
    • 2005
  • Hairy root cultures have demonstrated great promise in terms of their biosynthetic capability toward the production of secondary metabolites, but continue to constitute a major challenge with regard to large-scale cultures. In order to assess the possibility of conducting mass production of biomass, and the extraction of useful metabolites from Panax ginseng. P. ginseng hairy roots, transformed by Rhizobium rhizogenes KCTC 2744, were used in bioreactors of different types and sizes. The most effective mass production of hairy roots was achieved in several differently Sized air bubble bioreactors compared to all other bioreactor types. Hairy root growth was enhanced by aeration, and the production increased with increasing aeration rate in a 1 L bioreactor culture. It was determined that the hairy root growth rate could be substantially enhanced by increases in the aeration rate upto 0.5vvm, but at aeration rates above 0.5vvm, only slight promotions in growth rates were observed. In 20 L air bubble bioreactors, with a variety of inoculum sizes, the hairy roots exhibited the most robust growth rates with an inoculum size of 0.1% (w/v), within the range 0.1 to 0.7% (w/v). The specific growth rates of the hairy root decreased with increases in the inoculum size.

Relationship Between Bulk Density and Root Weight in White Ginseng (백삼의 심적밀도와 근중과의 관계)

  • Park, Hoon;Kim, Young-Hee;Yang, Cha-Bum
    • Journal of Ginseng Research
    • /
    • v.17 no.3
    • /
    • pp.224-227
    • /
    • 1993
  • Weight (g/root) and bulk density (g/$cm^3$) of tap root in 15-root-grade of 4-year-old white ginseng were investigated by specific gravity and weight-volume method. Bulk density measured by specific gravity ranged from 0.8 to 1.2g/$cm^3$ with almost normal distribution in frequency (number 1 of roots). Bulk density measured by volume-weight method had significant correlation with root weight. The percentage of high bulk density root (above 1.0) showed significant positive correlation with mean root weight or mean bulk density of root weight, indicating that the growth conditions for large root provide the better compactnes of root tissue.

  • PDF

Studies on the Effect of Shading Materials on the Temperature, Light Intensity, Photosynthesis and. the Root Growth of the Korean Ginseng(Panax Ginseng C.A. Meyer) (차광하의 온도 및 광도가 고려인삼의 광합성 및 근생장에 미치는 영향)

  • 이종철;천성기;김요태;조재성
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.91-98
    • /
    • 1980
  • Three kinds of shading materials, styrol-foam board, pine board and polytex, were examined and compared with ordinary shading, and the effects of light intensity and the temperature under the shadings on the photosynthesis and the root growth of the Korean ginseng were studied to improve the shading on the ginseng field. The amounts of photosynthesis of the ginseng leaves at 2$0^{\circ}C$ were significantly larger than those at 3$0^{\circ}C$ in the same light intensity. At 2$0^{\circ}C$, the maximum photosynthesis occured at 35, 000 lux, but at 3$0^{\circ}C$, the amount of photosynthesis was rapidly reduced by higher light intensity over 26, 200 lux. The best root growth occurred under the polytex shading and the styrol-foam board shading was also effective for ginseng growth. Under the ordinary shading, the root growth of ginseng planted on rear line was very poor but under the styrol-foam or the polytex shading, the root growth showed little difference between the ginsengs planted on rear line and front line.

  • PDF